設(shè)復(fù)數(shù)z1=1-i,z2=x+2i(x∈R),若
z2
z1
為實(shí)數(shù),則x=(  )
A、-2B、-1C、1D、2
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:由復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡(jiǎn)復(fù)數(shù)
z2
z1
,再由
z2
z1
為實(shí)數(shù)得出復(fù)數(shù)的虛部為零,最后解得x的值.
解答: 解:∵z1=1-i,z2=x+2i,
z2
z1
=
x+2i
1-i
=
(x+2i)(1+i)
(1-i)(1+i)
=
x-2+(x+2)i
2
=
x-2
2
+
x+2
2
i

z2
z1
為實(shí)數(shù),
x+2
2
=0
,解得x=-2.
故選:A.
點(diǎn)評(píng):本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知首項(xiàng)a1=3的無(wú)窮等比數(shù)列{an}(n∈N*)的各項(xiàng)和等于4,則這個(gè)數(shù)列{an}的公比是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某旅游景點(diǎn)給游人準(zhǔn)備了這樣一個(gè)游戲,他制作了“迷尼游戲板”:在一塊傾斜放置的矩形膠合板上釘著一個(gè)形如“等腰三角形”的八行鐵釘,釘子之間留有空隙作為通道,自上而下第1行2個(gè)鐵釘之間有1個(gè)空隙,第2行3個(gè)鐵釘之間有2個(gè)空隙,…,第8行9個(gè)鐵釘之間有8個(gè)空隙(如圖所示).東方莊家的游戲規(guī)則是:游人在迷尼板上方口放人一球,每玩一次(放入一球就算玩一次)先付給莊家2元.若小球到達(dá)①②③④號(hào)球槽,分別獎(jiǎng)4元、2元、0元、-2元.(一個(gè)玻璃球的滾動(dòng)方式:通過(guò)第1行的空隙向下滾動(dòng),小球碰到第二行居中的鐵釘后以相等的概率滾入第2行的左空隙或右空隙.以后小球按類(lèi)似方式繼續(xù)往下滾動(dòng),落入第8行的某一個(gè)空隙后,最后掉入迷尼板下方的相應(yīng)球槽內(nèi)).恰逢周末,某同學(xué)看了一個(gè)小時(shí),留心數(shù)了數(shù),有80人次玩.試用你學(xué)過(guò)的知識(shí)分析,這一小時(shí)內(nèi)游戲莊家是贏是賠?通過(guò)計(jì)算,你得到什么啟示?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若sin(π+x)+cos(π+x)=
1
2
,則sin2x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
1
i
-(i-1)(i+1)的模是(  )
A、1
B、
3
C、2
D、
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P在△ABC內(nèi)(包括邊界),且
AP
AB
AC
,若對(duì)于滿(mǎn)足條件的λ和μ,都有|aλ+bμ|≤2成立,則動(dòng)點(diǎn)Q(a,b)形成的平面區(qū)域的面積( 。
A、8B、16C、32D、64

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)的圖象如圖,則f(x)的解析式可能是(  )
A、f(x)=cos2x
B、f(x)=-sin(x+
π
4
C、f(x)=cos(
3
2
x-
π
8
D、f(x)=sin(
5
3
x-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中最小值為4的是( 。
A、y=4ex+e-x
B、y=x+
4
x
C、y=
2(x2+3)
x2+2
D、y=log3x+logx3(0<x<1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,AD⊥BC,D為垂足,AD在△ABC的外部,且BD:CD:AD=2:3:6,則tan∠BAC=(  )
A、1
B、
1
7
C、
1
5
D、
5
7

查看答案和解析>>

同步練習(xí)冊(cè)答案