設(shè)是兩個不同的平面,是一條直線,以下命題:
①若,則;②若,,則
③若,,則;④若,則.
其中正確命題的個數(shù)是
A.1個B.2個C.3個D.4個
A
對于①,可能還有;對于②,同樣可能還有;③是正確的,它實質(zhì)就是線在同等條件下垂直的判定定理;對于④直線與平面的關(guān)系:,,相交都有可能.因此只有命題③正確,選A.
【考點】直線與平面的位置關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:平面α∩平面β=l,α⊥平面γ,β⊥平面γ.
求證:l⊥γ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,E是以AB為直徑的半圓弧上異于A,B的點,矩形ABCD所在平面垂直于該半圓所在的平面,且AB=2AD=2。

(1).求證:EA⊥EC;
(2).設(shè)平面ECD與半圓弧的另一個交點為F。
①求證:EF//AB;
②若EF=1,求三棱錐E—ADF的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,ABCD為平行四邊形,平面PAB,,.M為PB的中點.

(1)求證:PD//平面AMC;
(2)求銳二面角B-AC-M的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖一,平面四邊形關(guān)于直線對稱,.把沿折起(如圖二),使二面角的余弦值等于.對于圖二,完成以下各小題:

(1)求兩點間的距離;
(2)證明:平面;
(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

二面角為60°,A、B是棱上的兩點,AC、BD分別在半平面內(nèi),,,且AB=AC=,BD=,則CD的長為(  )
A.         B.        C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知不同直線、和不同平面,給出下列命題:
  ②  ③異面 
 其中錯誤的命題有(  )個
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是直線,是兩個不同的平面,則(  )
A.若,,則B.若,,則
C.若,,則D.若,,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知α、β、γ是三個不同的平面,命題“α∥β,且α⊥γβ⊥γ”是真命題,如果把α、β、γ中的任意兩個換成直線,另一個保持不變,在所得的所有新命題中,真命題的個數(shù)是________.

查看答案和解析>>

同步練習(xí)冊答案