某三棱錐的三視圖是三個(gè)全等的等腰直角三角形,且正(主)視圖如圖所示,則此三棱錐的表面積為( 。
A、6+2
3
B、4+4
2
C、6+4
2
D、4+4
2
或6+2
3
考點(diǎn):由三視圖求面積、體積
專題:計(jì)算題,空間位置關(guān)系與距離
分析:結(jié)合直觀圖判斷各面的形狀,根據(jù)三視圖的數(shù)據(jù)求相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入三角形面積公式計(jì)算.
解答: 解:由三棱錐的三視圖是三個(gè)全等的等腰直角三角形,其直觀圖有兩種情況,當(dāng)直觀圖如圖所示時(shí):BC⊥AC,SA=AC=BC=2,SA⊥平面ABC,
∴AB=2
2
,SC=2
2
,各面都是直角三角形,
∴幾何體的表面積S=2×
1
2
×2×2+2×
1
2
×2
2
×2=4+4
2

當(dāng)AB⊥AC,AB=AC=SA=2,AD=
2
,SD=
6
,BC=2
2
,
∴幾何體的表面積S=3×
1
2
×2×2+
1
2
×2
2
×
6
=6+2
3


故選:D.
點(diǎn)評(píng):本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征及相關(guān)幾何量的數(shù)據(jù)是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-ax2+ax-1,x∈[0,1],若a≥
1
2
,則f(x)的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=
2
1
(3x2-2x)dx,則(ax2-
1
x
6的展開式中的第4項(xiàng)為(  )
A、-1280x3
B、-1280
C、240
D、-240

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A=﹛x|x-2>0﹜,B=﹛x|x|≤1﹜.則(∁UA)∪B=( 。
A、{x|-1≤x≤1}
B、{x|-1≤x≤1或x>2}
C、{x|-1≤x≤2}
D、{x|x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列賦值語(yǔ)句正確的是( 。
A、a-b=2B、5=a
C、a=b=4D、a=a+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=5-cos(4x+
π
9
)的最大值是( 。
A、1B、-1C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n=2014,則輸出的S=(  )
A、
1007
2015
B、
2013
2014
C、
2014
2015
D、
1006
2013

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinωx•cosωx+sin2ωx-
1
2
(ω>0),其相鄰兩個(gè)零點(diǎn)間的距離為
π
2

(Ⅰ)求f(x)的解析式;
(Ⅱ)銳角△ABC中,f(
A
2
+
π
8
)=
1
2
,AB=4,△ABC的面積為6,求BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a>0,b>0,a+b=1,求證:
1
a
+
1
b
+
1
ab
≥8.

查看答案和解析>>

同步練習(xí)冊(cè)答案