20.已知某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:
[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?(X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+2}{n}_{+1}}$,X2>6.635時(shí)有99%的把握具有相關(guān)性)

分析 (1)由分層抽樣的特點(diǎn)可得樣本中有25周歲以上、下組工人人數(shù),再由所對應(yīng)的頻率可得樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上、下組工人的人數(shù)分別為3,2,由古典概型的概率公式可得答案;
(2)由頻率分布直方圖可得“25周歲以上組”中的生產(chǎn)能手的人數(shù),以及“25周歲以下組”中的生產(chǎn)能手的人數(shù),據(jù)此可得2×2列聯(lián)表,可得k2≈1.79,由1.79<2.706,可得結(jié)論.

解答 解:(1)由已知得,樣本中有25周歲以上組工人60名,25周歲以下組工人40名,
所以,樣本中日平均生產(chǎn)件數(shù)不足60件的工人中,25周歲以上組工人有60×0.05=3(人),記為A1,A2,A3.25周歲以下組工人有40×0.05=2(人),記為B1,B2
從中隨機(jī)抽取2名工人,所有可能的結(jié)果共有10種,即:(A1,A2),(A1,A3),(A2,A3),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2) (B1,B2).其中,至少抽到一名“25周歲以下組”工人的可能結(jié)果共有7種,是:(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(B1,B2).
故所求概率P=0.7.
(2)由頻率分布直方圖可知,在抽取的100名工人中,“25周歲以上組”中的生產(chǎn)能手有60×0.25=15(人),“25周歲以下組”中的生產(chǎn)能手有40×0.375=15(人),據(jù)此可得2×2列聯(lián)表如下:

生產(chǎn)能手非生產(chǎn)能手總計(jì)
25周歲以上組154560
25周歲以下組152540
總計(jì)3070100
所以得:X2=$\frac{100×(15×25-15×45)^{2}}{60×40×30×70}$≈1.79.
所以不能在犯錯(cuò)誤的概率不超過0.1的前提下認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”.

點(diǎn)評 本題考查獨(dú)立性檢驗(yàn),涉及頻率分布直方圖,以及古典概型的概率公式,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=$\sqrt{1-{3}^{x}}$的定義域是( 。
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如表是某商店每月某種商品的銷售額(用y表示,單位:萬元)與月份(t)的關(guān)系對照表.
月份(t)12345
銷售額(y)y1y2y3y4y5
其中$\overline{y}$=10,$\sum_{i=1}^{5}$tiyi=163.請建立y關(guān)于t的回歸方程(系數(shù)精確到0.01)并預(yù)測6月份這種商品的銷售額.
參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.給出如下四個(gè)命題,其中正確的命題為( 。
A.若“p且q”為假命題,則p、q均為假命題
B.命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”
C.“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”
D.在△ABC中,“A>B”是“sinA>sinB”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2},
(1)求A∩B,A∪B.
(2)若集合C={x|2x+a>0},滿足C∪B=C,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x),g(x)定義在同一區(qū)間上,f(x)是增函數(shù),g(x)是減函數(shù),且g(x)≠0,則( 。
A.f(x)+g(x) 為減函數(shù)B.f(x)-g(x)為增函數(shù)C.f(x)•g(x)是減函數(shù)D.$\frac{f(x)}{g(x)}$ 是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點(diǎn)為F(-c,0),M、N在雙曲線C上,O是坐標(biāo)原點(diǎn),若四邊形OFMN為平行四邊形,且四邊形OFMN的面積為$\sqrt{2}$cb,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若不等式mx2+x+n>0的解集是{x|-$\frac{1}{3}$<x<$\frac{1}{2}$},則m,n分別是(  )
A.6,-1B.-6,-1C.6,1D.-6,1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=$\frac{\sqrt{x}}{{x}^{2}-1}$的定義域是(  )
A.{x|x≥0或x≠1}B.{x|x≥0或 x≠±1}C.{x|x≥且x≠1}D.{x|x≥0且x≠1}

查看答案和解析>>

同步練習(xí)冊答案