12.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F(-c,0),M、N在雙曲線C上,O是坐標(biāo)原點,若四邊形OFMN為平行四邊形,且四邊形OFMN的面積為$\sqrt{2}$cb,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.2$\sqrt{3}$

分析 設(shè)M(x0,y0),y0>0,由四邊形OFMN為平行四邊形,四邊形OFMN的面積為$\sqrt{2}$cb,由x0=-$\frac{c}{2}$,丨y0丨=$\sqrt{2}$b,代入雙曲線方程,由離心率公式,即可求得雙曲線C的離心率.

解答 解:雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)焦點在x軸上,
設(shè)M(x0,y0),y0>0,由四邊形OFMN為平行四邊形,
∴x0=-$\frac{c}{2}$,
四邊形OFMN的面積為$\sqrt{2}$cb,
∴丨y0丨c=$\sqrt{2}$cb,即丨y0丨=$\sqrt{2}$b,
∴M(-$\frac{c}{2}$,$\sqrt{2}$b),
代入雙曲線可得:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,整理得:$\frac{{c}^{2}}{4{a}^{2}}-2=1$,
由e=$\frac{c}{a}$,
∴e2=12,由e>1,解得:e=2$\sqrt{3}$,
故選D.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,考查雙曲線的離心率公式,考查計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知⊙O1:(x-1)2+y2=4,⊙O2:x2+(y-$\sqrt{3}$)2=9.
(1)求兩圓公共弦所在的直線方程;
(2)求兩圓的公共弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知全集U={2,3,x+3},U的子集A={5},若∁UA={2,y},則x•y=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分為5組:
[50,60),[60,70),[70,80),[80,90),[90,100)分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否能在犯錯誤的概率不超過0.1的前提下認為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?(X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+2}{n}_{+1}}$,X2>6.635時有99%的把握具有相關(guān)性)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在空間直角坐標(biāo)系中,點A(-4,-1,-9)與點B(-10,1,-6)的距離是( 。
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,若a=4,sinA=2sinB,則b=( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知過點P(4,3)的光線,經(jīng)x軸上一點A反射后的光線過點Q(0,5).則點A的坐標(biāo)為($\frac{5}{2}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.由曲線y=$\sqrt{x}$,直線y=2-x及y軸所圍成的封閉圖形的面積為$\frac{5}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.$\frac{10}{3}$B.$\frac{16}{3}$C.5D.10

查看答案和解析>>

同步練習(xí)冊答案