在研究某新措施對“非典”的防治效果問題時,得到如下列聯(lián)表:
 
存活數(shù)
死亡數(shù)
合計
新措施
132
18
150
對照
114
36
150
合計
246
54
300
由表中數(shù)據(jù)可得,故我們由此認為 “新措施對防治非典有效” 的把握為(  )
A.0            B.        C.       D.
C

本題考查了獨立性檢驗的應(yīng)用的相關(guān)知識,是一個基礎(chǔ)題,題目本身不用檢驗,只要同臨界值進行比較就可以,注意數(shù)據(jù)的對應(yīng)。
∵由表中數(shù)據(jù)可得k2=7.317,根據(jù)所給的觀測值,同臨界值進行比較,看出7.7.317>6.635,∴由此認為“新措施對防治非典有效”的把握為1-0.01=99%。故選C。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)
口袋中有質(zhì)地、大小完全相同的5個球,編號分別為1,2,3,4,5.甲先摸出一個球,記下編號為,放回袋中后,乙再摸一個球,記下編號為.
(Ⅰ)求“”的事件發(fā)生的概率;
(Ⅱ)若點落在圓內(nèi),則甲贏,否則算乙贏,這個游戲規(guī)則公平嗎?試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
現(xiàn)有三人被派去各自獨立地解答一道數(shù)學(xué)問題,已知三人各自解答出的問題概率分別為,,且他們是否解答出問題互不影響.
(Ⅰ)求恰有二人解答出問題的概率;
(Ⅱ)求“問題被解答”與“問題未被解答”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩位同學(xué)做摸球游戲,游戲規(guī)則規(guī)定:兩人輪流從一個放有2個紅球,3個黃球,1個白球且顏色不同的6個小球的暗箱中取球,每次每人只能取一球,每取出1個后立即放回,另一個接著再取出后也立即放回,誰先取到紅球,誰為勝者.現(xiàn)甲先取,求甲摸求次數(shù)不超過3次就獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到過疫區(qū)。B肯定是受A感染的。對于C,因為難以斷定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是。同樣也假定D受A、B和C感染的概率都是。在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機變量。寫出X的分布列(不要求寫出計算過程),并求X的均值(即數(shù)學(xué)期望)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

從集合中,隨機選出4個數(shù)組成子集,使得這4個數(shù)中的任何兩個數(shù)之和不等于1,則取出這樣的子集的概率為 ______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

為防止某種疾病,今研制一種新的預(yù)防藥.任選取100只小白鼠作試驗,得到如下的2x2列聯(lián)表:
藥物效果與動物試驗2X2列聯(lián)表
 
患病
未患病
總計
服用藥
15
40
55
沒服用藥
20
25
45
總計
35
65
100
則認為“藥物對防止某種疾病有效”這一結(jié)論是錯誤的可能性約為( 。
A.0.025B.0.10C.0.01D.0.005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,四個相同的直角三角形與中間的小正方形拼成的一個邊長為2的大正方形,若直角三角形中較小的銳角,現(xiàn)在向該正方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,飛鏢落在小正方形內(nèi)概率是___            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若平面上點值由擲骰子確定,第一次確定,第二次確定,則點落在方程所表示圖形的內(nèi)部(不包括邊界)的概率是_________.

查看答案和解析>>

同步練習(xí)冊答案