9.求證:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<lnn.

分析 引入輔助函數(shù)f(x)=$\frac{1-x}{x}$+lnx,由導(dǎo)數(shù)證明其在[1,+∞)上為增函數(shù),得到f($\frac{n}{n-1}$)>0,即$\frac{1}{n}<ln\frac{n}{n-1}$,則數(shù)列不等式得證.

解答 解:令f(x)=$\frac{1-x}{x}$+lnx,則${f}^{′}(x)=\frac{-x-1+x}{{x}^{2}}+\frac{1}{x}=-\frac{1}{{x}^{2}}+\frac{1}{x}$,
當(dāng)x≥1時(shí),f′(x)≥0,∴f(x)在[1,+∞)上為增函數(shù),
∴n≥2時(shí):f($\frac{n}{n-1}$)=$\frac{1-\frac{n}{n-1}}{\frac{n}{n-1}}+ln\frac{n}{n-1}$=ln$\frac{n}{n-1}-\frac{1}{n}$>f(1)=0,
即:$\frac{1}{n}<ln\frac{n}{n-1}$,
∴$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<ln$\frac{2}{1}$+ln$\frac{3}{2}$+…+ln$\frac{n}{n-1}$=1nn.

點(diǎn)評(píng) 本題考查了數(shù)列的求和,考查了利用構(gòu)造函數(shù)法證明數(shù)列不等式,關(guān)鍵是構(gòu)造出增函數(shù)f(x)=$\frac{1-x}{x}$+lnx,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知0<n<2,則復(fù)數(shù)n(1-2i)+(2+i)對(duì)應(yīng)的點(diǎn)$\frac{1}{2}>$n>0時(shí),復(fù)數(shù)對(duì)應(yīng)點(diǎn)在第一象限.
n=$\frac{1}{2}$時(shí),復(fù)數(shù)對(duì)應(yīng)點(diǎn)在x坐標(biāo)軸.
$\frac{1}{2}<n<2$時(shí),復(fù)數(shù)對(duì)應(yīng)點(diǎn)在第四象限..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}滿足:a1=1,an+1=3an,n∈N*.設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,已知b1≠0,2bn-b1=S1•Sn,n∈N*
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=bn•log3an,求數(shù)列{cn}的前n項(xiàng)和Tn;
(Ⅲ)證明:對(duì)任意n∈N*且n≥2,有$\frac{1}{{{a_2}-{b_2}}}$+$\frac{1}{{{a_3}-{b_3}}}$+…+$\frac{1}{{{a_n}-{b_n}}}$<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.化簡(jiǎn):y=sin($\frac{π}{2}$+x)cos($\frac{π}{6}$-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.使y=cosωx(ω>0)在區(qū)間[0,1]上至少出現(xiàn)2次最大值,至多出現(xiàn)3次最大值,則周期T的取值范圍是(  )
A.1<T≤2B.1≤T≤2C.$\frac{1}{2}$<T≤1D.$\frac{1}{2}$≤T≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=alnx+$\frac{1}{x}$在區(qū)間(1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-2]B.(-∞,-1]C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求證:$\frac{1}{n+1}$(1+$\frac{1}{3}$+…+$\frac{1}{2n-1}$)$>\frac{1}{n}$($\frac{1}{2}+\frac{1}{4}$+…+$\frac{1}{2n}$)(n∈N,n≥2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正方形ABCD的邊長(zhǎng)為1,求圖中陰影部分的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,公比為q,若an>0,a1=1,S3=7,則q=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案