【題目】如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB=4, BC=CD=2, AA=2, E、E、F分別是棱AD、AA、AB的中點。
證明:(1)直線EE//平面FCC;
(2)求二面角B-FC-C的余弦值。
【答案】(1)見解析 (2)
【解析】試題分析:(1)以DM為x軸,DC為y軸,DD1為z軸建立空間直角坐標(biāo)系,求得設(shè)平面CC1F的法向量為, ,由得直線EE//平面FCC;
(2)通過建立空間直角坐標(biāo)系,先求出兩個平面的法向量,則兩個平面的法向量的夾角即為兩平面的二面角或其補角.
試題解析:
解法(1)因為AB=4, BC=CD=2, F是棱AB的中點,
所以BF=BC=CF,△BCF為正三角形, 因為ABCD為
等腰梯形,所以∠BAC=∠ABC=60°,取AF的中點M,
連接DM,則DM⊥AB,所以DM⊥CD,
以DM為x軸,DC為y軸,DD1為z軸建立空間直角坐標(biāo)系,
,則D(0,0,0),A(,-1,0),F(,1,0),C(0,2,0),
C1(0,2,2),E(,,0),E1(,-1,1),所以
,,
設(shè)平面CC1F的法向量為則所以取,則,所以,所以直線EE//平面FCC.
(2),設(shè)平面BFC1的法向量為,則所以,取,則,
,,
所以,由圖可知二面角B-FC-C為銳角,所以二面角B-FC-C的余弦值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 =(m﹣2) +2 , = +(m+1) ,其中 、 分別為x、y軸正方向單位向量.
(1)若m=2,求 與 的夾角;
(2)若( + )⊥( ﹣ ),求實數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三個頂點A(﹣1,0),B(1,0),C(3,2),其外接圓為⊙H.若直線l過點C,且被⊙H截得的弦長為2,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列函數(shù)中,與函數(shù)y= 有相同定義域的是( )
A.f(x)=lnx
B.
C.f(x)=|x|
D.f(x)=ex
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,已知2(tanA+tanB)= .
(1)證明:a、c、b成等差數(shù)列;
(2)求cosC的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,已知AB=AC=1,A=120°,E,F(xiàn)分別是邊AB,AC上的點,且 , ,其中m,n∈(0,1).若EF,BC的中點分別為M,N,且m+4n=1,則 的最小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)滿足f(x+1)﹣f(x)=2x,且f(0)=1.
(1)求f(x)的解析式;
(2)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax﹣2 , g(x)=loga|x|(a>0且a≠1),若f(4)g(﹣4)<0,則y=f(x),y=g(x)在同一坐標(biāo)系內(nèi)的大致圖象是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com