【題目】已知函數(shù)fx)=2x1aR),若對(duì)任意x1[1,+),總存在x2R,使fx1)=gx2),則實(shí)數(shù)a的取值范圍是()

A. B. C. D.

【答案】C

【解析】

對(duì)aa=0,a0a0討論,a0時(shí)分兩種情況討論,比較兩個(gè)函數(shù)的值域的關(guān)系,即得實(shí)數(shù)a的取值范圍.

當(dāng)a=0時(shí),函數(shù)fx)=2x1的值域?yàn)?/span>[1,+∞),函數(shù)的值域?yàn)?/span>[0,++∞),滿足題意.

當(dāng)a0時(shí),y=的值域?yàn)椋?/span>2a,+∞, y=的值域?yàn)?/span>[a+2,-a+2],

因?yàn)?/span>a+2-2a=2-a>0,所以a+22a,

所以此時(shí)函數(shù)g(x)的值域?yàn)椋?/span>2a,+∞,

由題得2a1,即a,即a0.

當(dāng)a0時(shí),y=的值域?yàn)椋?/span>2a,+∞,y=的值域?yàn)?/span>[-a+2,a+2],

當(dāng)a時(shí),-a+2≤2a,由題得.

當(dāng)0a時(shí),-a+22a,由題得2a1,所以a.所以0a.

綜合得a的范圍為a1≤a≤2,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,點(diǎn)是圓上一動(dòng)點(diǎn),點(diǎn)在線段上,點(diǎn)在半徑上,且滿足.

(1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于點(diǎn)不在軸上),垂直于的直線交于點(diǎn),與軸交于點(diǎn),若,求點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合,,分別從,中各取2個(gè)不同的數(shù),能組成不同的能被3整除的四位偶數(shù)的個(gè)數(shù)是________(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則,將某些數(shù)取出.先取1;再取1后面兩個(gè)偶數(shù)2,4;再取4后面最鄰近的3個(gè)連續(xù)奇數(shù)5,7,9;再取9后面的最鄰近的4個(gè)連續(xù)偶數(shù)10,12,14,16;再取此后最鄰近的5個(gè)連續(xù)奇數(shù)17,19,21,23,25.按此規(guī)則一直取下去,得到一個(gè)新數(shù)列1,2,4,5,7,9,10,12,14,16,17,,則在這個(gè)新數(shù)列中,由1開始的第2 019個(gè)數(shù)是(  )

A. 3 971B. 3 972C. 3 973D. 3 974

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一次運(yùn)動(dòng)會(huì)上,某單位派出了由6名主力隊(duì)員和5名替補(bǔ)隊(duì)員組成的代表隊(duì)參加比賽.

1)如果隨機(jī)抽派5名隊(duì)員上場(chǎng)比賽,將主力隊(duì)員參加比賽的人數(shù)記為,求隨機(jī)變量的數(shù)學(xué)期望;

2)若主力隊(duì)員中有2名隊(duì)員在練習(xí)比賽中受輕傷,不宜同時(shí)上場(chǎng);替補(bǔ)隊(duì)員中有2名隊(duì)員身材相對(duì)矮小,也不宜同時(shí)上場(chǎng),那么為了場(chǎng)上參加比賽的5名隊(duì)員中至少有3名主力隊(duì)員,教練員有多少種組隊(duì)方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為

(1)求直線的直角坐標(biāo)方程與曲線的普通方程;

(2)若是曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求點(diǎn)到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為坐標(biāo)原點(diǎn),橢圓的右焦點(diǎn)為,離心率為,過(guò)點(diǎn)的直線相交于兩點(diǎn),點(diǎn)為線段的中點(diǎn).

1)當(dāng)的傾斜角為時(shí),求直線的方程;

2)試探究在軸上是否存在定點(diǎn),使得為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓E)的焦距為,直線x軸的交點(diǎn)為G,過(guò)點(diǎn)且不與x軸重合的直線E于點(diǎn)A,B.當(dāng)垂直x軸時(shí),的面積為.

1)求E的方程;

2)若,垂足為C,直線x軸于點(diǎn)D,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在三棱柱中,,,且.

1)求證:平面平面

2)設(shè)二面角的大小為,求的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案