已知向量
a
=(cos
3x
2
,sin
3x
x
),
b
=(cos
x
2
,-sin
x
2
),x∈[0,
π
2
]

(1)用x的式子來表示
a
b
|
a
+
b
|
;
(2)求函數(shù)f(x)=
a
b
-4|
a
+
b
|
的值域.
分析:(1)直接利用向量數(shù)量積的坐標(biāo)公式進(jìn)行求解即可,以及計(jì)算|
a
+
b
|
2,從而求出|
a
+
b
|
的值;
(2)先求出函數(shù)f(x)=
a
b
-4|
a
+
b
|
的解析式,然后化簡(jiǎn)整理成f(x)=2(cosx-2)2-9,根據(jù)x的范圍可求出該函數(shù)的值域.
解答:解:(1)∵
a
=(cos
3x
2
,sin
3x
x
),
b
=(cos
x
2
,-sin
x
2
),x∈[0,
π
2
]

a
b
=cos
3x
2
cos
x
2
-sin
3x
2
sin
x
2
=cos2x,
|
a
+
b
|
2=1+1+2cos2x=4cos2x,
|
a
+
b
|
=2cosx.
(2)∵
a
b
=cos2x,|
a
+
b
|
=2cosx,
f(x)=
a
b
-4|
a
+
b
|
=cos2x-8cosx=2cos2x-8cosx-1=2(cosx-2)2-9.
∵x∈[0,
π
2
],所以cosx∈[0,1],
即f(x)的值域?yàn)閇-7,-1].
點(diǎn)評(píng):本題主要考查了平面向量數(shù)量積的運(yùn)算,以及三角函數(shù)的化簡(jiǎn)和二次函數(shù)在閉區(qū)間上的最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(-cosα,1+sinα)
b
=(2sin2
α
2
,sinα)

(Ⅰ)若|
a
+
b
|=
3
,求sin2α的值;
(Ⅱ)設(shè)
c
=(cosα,2)
,求(
a
+
c
)•
b
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosωx-sinωx,sinωx)
,
b
=(-cosωx-sinωx,2
3
cosωx)
,其中ω>0,且函數(shù)f(x)=
a
b
(λ為常數(shù))的最小正周期為π.
(Ⅰ)求函數(shù)y=f(x)的圖象的對(duì)稱軸;
(Ⅱ)若函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(
π
4
,0)
,求函數(shù)y=f(x)在區(qū)間[0,
12
]
上的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos
θ
2
,sin
θ
2
)
,
b
=(2,1)
,且
a
b

(1)求tanθ的值;
(2 )求
cos2θ
2
cos(
π
4
+θ)•sinθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cos(ωx-
π
6
),  sin(ωx-
π
4
)),  
b
=(sin(
2
3
π-ωx), sin(ωx+
π
4
))
(其中ω>0).若函數(shù)f(x)=2
a
b
-1
的圖象相鄰對(duì)稱軸間距離為
π
2

(Ⅰ)求ω的值;
(Ⅱ)求f(x)在[-
π
12
,  
π
2
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(cosθ,sinθ),
b=
(cos2θ-1,sin2θ),
c
=(cos2θ,sin2θ-
3
)
.其中θ≠kπ,k∈Z.
(1)求證:
a
b
;
(2)設(shè)f(θ)=
a
c
,且θ∈(0,π),求f(θ)
的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案