平面向量a,b滿足|a+2b|=,且a+2b平行于直線y=2x+1,若b=(2,-1),則a=________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷3練習(xí)卷(解析版) 題型:選擇題
在數(shù)列{an}中,a1=2i(i為虛數(shù)單位),(1+i)an+1=(1-i)an(n∈N*),則a2 012的值為( )
A.-2 B.0 C.2 D.2i
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年(安徽專用)高考數(shù)學(xué)(文)專題階段評估模擬卷1練習(xí)卷(解析版) 題型:選擇題
已知e1,e2是兩個單位向量,其夾角為θ,若向量m=2e1+3e2,則|m|=1的充要條件是( )
A.θ=π B.θ=
C.θ= D.θ=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練解答題押題練B組練習(xí)卷(解析版) 題型:解答題
如圖,橢圓=1(a>b>0)的上,下兩個頂點(diǎn)為A,B,直線l:y=-2,點(diǎn)P是橢圓上異于點(diǎn)A,B的任意一點(diǎn),連接AP并延長交直線l于點(diǎn)N,連接PB并延長交直線l于點(diǎn)M,設(shè)AP所在的直線的斜率為k1,BP所在的直線的斜率為k2.若橢圓的離心率為,且過點(diǎn)A(0,1).
(1)求k1·k2的值;
(2)求MN的最小值;
(3)隨著點(diǎn)P的變化,以MN為直徑的圓是否恒過定點(diǎn)?若過定點(diǎn),求出該定點(diǎn);如不過定點(diǎn),請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練解答題押題練A組練習(xí)卷(解析版) 題型:解答題
經(jīng)市場調(diào)查,某旅游城市在過去的一個月內(nèi)(以30天計),旅游人數(shù)f(t)(萬人)與時間t(天)的函數(shù)關(guān)系近似滿足f(t)=4+,人均消費(fèi)g(t)(元)與時間t(天)的函數(shù)關(guān)系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬元)與時間t(1≤t≤30,t∈N*)的函數(shù)關(guān)系式;
(2)求該城市旅游日收益的最小值(萬元).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練F組練習(xí)卷(解析版) 題型:填空題
已知函數(shù)y=sin(ωx+φ)的部分圖象如圖,則φ的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練E組練習(xí)卷(解析版) 題型:填空題
設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(1-x)+f(1+x)=0恒成立.如果實(shí)數(shù)m、n滿足不等式組那么m2+n2的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練D組練習(xí)卷(解析版) 題型:填空題
過點(diǎn)P(1,1)的直線,將圓形區(qū)域{(x,y)|x2+y2≤4}分兩部分,使得這兩部分的面積之差最大,則該直線的方程為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練A組練習(xí)卷(解析版) 題型:填空題
已知雙曲線C:=1的焦距為10,點(diǎn)P(2,1)在C的漸近線上,則C的方程為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com