已知e1,e2是兩個單位向量,其夾角為θ,若向量m=2e1+3e2,則|m|=1的充要條件是( )
A.θ=π B.θ=
C.θ= D.θ=
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷1練習卷(解析版) 題型:填空題
設函數f(x)的定義域為D,若存在非零實數l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱函數f(x)為M上的l高調函數.現給出下列命題:
①函數f(x)=x是R上的1高調函數;
②函數f(x)=sin 2x為R上的π高調函數;
③如果定義域為[-1,+∞)的函數f(x)=x2為[-1,+∞)上的m高調函數,那么實數m的取值范圍是[2,+∞).
其中正確的命題是________.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年(安徽專用)高考數學(文)專題階段評估模擬卷1練習卷(解析版) 題型:選擇題
函數y=f(x),x∈D,若存在常數C,對任意的x1∈D,存在唯一的x2∈D使得=C,則稱函數f(x)在D上的幾何平均數為C.已知f(x)=x3,x∈[1,2],則函數f(x)=x3在[1,2]上的幾何平均數為( )
A. B.2
C.4 D.2
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練解答題押題練D組練習卷(解析版) 題型:解答題
若兩個橢圓的離心率相等,則稱它們?yōu)?/span>“相似橢圓”.如圖,在直角坐標系xOy中,已知橢圓C1:=1,A1,A2分別為橢圓C1的左、右頂點.橢圓C2以線段A1A2為短軸且與橢圓C1為“相似橢圓”.
(1)求橢圓C2的方程;
(2)設P為橢圓C2上異于A1,A2的任意一點,過P作PQ⊥x軸,垂足為Q,線段PQ交橢圓C1于點H.求證:H為△PA1A2的垂心.(垂心為三角形三條高的交點)
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練解答題押題練C組練習卷(解析版) 題型:解答題
某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產品,估計能獲得10萬元到1 000萬元的投資收益.現準備制定一個對科研課題組的獎勵方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數y=f(x)模型制定獎勵方案,試用數學語言表述該公司對獎勵函數f(x)模型的基本要求,并分析函數y=+2是否符合公司要求的獎勵函數模型,并說明原因;
(2)若該公司采用模型函數y=作為獎勵函數模型,試確定最小的正整數a的值.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練填空題押題練F組練習卷(解析版) 題型:填空題
平面向量a,b滿足|a+2b|=,且a+2b平行于直線y=2x+1,若b=(2,-1),則a=________.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年高考數學(文)三輪專題體系通關訓練填空題押題練C組練習卷(解析版) 題型:填空題
已知函數f(x)是定義在R上的奇函數,且當x∈(0,+∞)時,都有不等式f(x)+xf′(x)>0成立,若a=40.2f(40.2),b=(log43)f(log43),c=f ,則a,b,c的大小關系是________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com