【題目】下列選項敘述錯誤的是( )
A.命題“若x≠1,則x2﹣3x+2≠0”的逆否命題是“若x2﹣3x+2=0,則x=1”
B.若命題p:x∈R,x2+x+1≠0,則p:x∈R,x2+x+1=0
C.若p∨q為真命題,則p,q均為真命題
D.若命題q:x∈R,x2+mx+1>0為真命題,則m的取值范圍為﹣2<m<2
【答案】C
【解析】解:對于A,命題“若x≠1,則x2﹣3x+2≠0”的逆否命題是“若x2﹣3x+2=0,則x=1”,故A正確;
對于B,若命題p:x∈R,x2+x+1≠0,則p:x∈R,x2+x+1=0,故B正確;
對于C,若p∨q為真命題,則p,q中至少有一個為真命題,故C錯誤;
對于D.若命題q::x∈R,x2+mx+1>0為真命題,可得△=m2﹣4<0,解得﹣2<m<2,故D正確.
故選:C.
【考點精析】利用命題的真假判斷與應(yīng)用對題目進行判斷即可得到答案,需要熟知兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知i為虛數(shù)單位,下列運算結(jié)果為實數(shù)的是( )
A.i(1+i)B.i2(1+i)C.i(1+i)2D.i2(1+i)2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四人參加數(shù)學(xué)競賽.賽后,他們四個人預(yù)測名次的談話如下:
甲:“丙第一名,我第三名”;
乙:“我第一名,丁第四名”;
丙:“丁第二名,我第三名”;
丁沒有說話.最后公布結(jié)果時,發(fā)現(xiàn)他們預(yù)測都只猜對了一半,則這次競賽甲、乙、丙、丁的名次依次是第( )名.
A.一、二、三、四B.三、一、二、四
C.三、一、四、二D.四、三、二、一
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2+2x,若f(2﹣a2)>f(a),則實數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)θ是第四象限角,則點P(sin(sinθ),cos(sinθ))在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是定義在R上的偶函數(shù),且在(﹣∞,0]上是增函數(shù),若不等式f(a)≥f(x)對任意x∈[1,2]恒成立,則實數(shù)a的取值范圍是( )
A.(﹣∞,1]
B.[﹣1,1]
C.(﹣∞,2]
D.[﹣2,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c為實數(shù),且a>b,則下列不等式關(guān)系正確的是( )
A.a2>b2
B.ac>bc
C.a+c>b+c
D.ac2>bc2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生作了一次調(diào)查,所得數(shù)據(jù)如表:
認為作業(yè)多 | 認為作業(yè)不多 | 總計 | |
喜歡玩電腦游戲 | 18 | 9 | 27 |
不喜歡玩電腦游戲 | 8 | 15 | 23 |
總計 | 26 | 24 | 50 |
由表中數(shù)據(jù)計算得到K2的觀測值k≈5.059,于是(填“能”或“不能”)在犯錯誤的概率不超過0.01的前提下認為喜歡玩電腦游戲與認為作業(yè)多有關(guān).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的5位數(shù),其中2,4不相鄰的數(shù)有個.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com