已知函數(shù),.
(I)求函數(shù)f(x)的解析式;
(II)若對(duì)于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,求實(shí)數(shù)a的取值范圍;
(III)設(shè)x1,x2,a1,a2>0,且a1+a2=1,求證:a1lnx1+a2lnx2≤ln(a1x1+a2x2).
考點(diǎn):
導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用;函數(shù)解析式的求解及常用方法;函數(shù)恒成立問題.
專題:
導(dǎo)數(shù)的綜合應(yīng)用.
分析:
(I)欲求函數(shù)f(x)的解析式,根據(jù)題意,即求出其中的f'(2)的值,故只須對(duì)函數(shù)求導(dǎo)后令x=2即可;
(II)設(shè)F(x)=f(x)+g(x),對(duì)于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,只須a≥F(x)max即可,利用導(dǎo)數(shù)求函數(shù)F(x)的最大值,則實(shí)數(shù)a的取值范圍可求.
(III)由(II),得F(x)=lnx﹣x≤﹣1,即lnx≤x﹣1,再分別令,,后利用不等式的性質(zhì)兩式相加,得到一個(gè)不等關(guān)系式,化簡(jiǎn)即可證出結(jié)論.
解答:
解:(I)因?yàn)?sub>,
所以f′(x)=x﹣f′(2).(2分)
令x=2,得f′(2)=1,
所以f(x)=.(4分)
(II)解:設(shè)F(x)=f(x)+g(x)=lnx﹣x,
則F′,(5分)
令F′(x)=0,解得x=1.(6分)
當(dāng)x變化時(shí),F(xiàn)(x)與F′(x)的變化情況如下表:
x | (0,1) | 1 | (1,+∞) |
f′(x) | + | 0 | ﹣ |
f(x) | 增 | 極大值 | 減 |
所以當(dāng)x=1時(shí),F(xiàn)(x)max=F(1)=﹣1.(9分)
因?yàn)閷?duì)于任意x∈(0,+∞),都有f(x)+g(x)≤a成立,
所以a≥﹣1.(10分)
(III)證明:由(II),得F(x)=lnx﹣x≤﹣1,即lnx≤x﹣1,
令,得,
令,得,(11分)
所以
因?yàn)閍1+a2=1,
所以,
即,
所以a1lnx1﹣a1ln(a1x1+a2x2)+a2lnx2﹣a2ln(a1x1+a2x2)≤0,
即a1ln1+a2lnx2≤(a1+a2)ln(a1x1+a2x2),
所以a1lnx1+a2lnx2≤ln(a1x1+a2x2).(14分)
點(diǎn)評(píng):
本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的導(dǎo)函數(shù)在某一區(qū)間上大于0,原函數(shù)是增函數(shù),導(dǎo)函數(shù)小于0,原函數(shù)是減函數(shù),考查了利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值,考查了分離變量法,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年山東猜題卷)已知函數(shù)求:
(I)求證:函數(shù)的圖象關(guān)于點(diǎn)中心對(duì)稱,并求的值;
(II)設(shè),且1<a1<2,求證+…+<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年遼寧卷理)(12分)
已知函數(shù),.
(I)證明:當(dāng)時(shí),在上是增函數(shù);
(II)對(duì)于給定的閉區(qū)間,試說(shuō)明存在實(shí)數(shù),當(dāng)時(shí),在閉區(qū)間上是減函數(shù);
(III)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(07年湖南卷理)(12分)
已知函數(shù),.
(I)設(shè)是函數(shù)圖象的一條對(duì)稱軸,求的值.
(II)求函數(shù)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省十校聯(lián)合體高三(上)期初聯(lián)考數(shù)學(xué)試卷 (理科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年高考試題(福建卷)解析版(理) 題型:解答題
(Ⅰ)已知函數(shù),。
(i)求函數(shù)的單調(diào)區(qū)間;
(ii)證明:若對(duì)于任意非零實(shí)數(shù),曲線C與其在點(diǎn)處的切線交于另一點(diǎn)
,曲線C與其在點(diǎn)處的切線交于另一點(diǎn),線段
(Ⅱ)對(duì)于一般的三次函數(shù)(Ⅰ)(ii)的正確命題,并予以證明。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com