11.計(jì)算:0.027${\;}^{\frac{1}{3}}$-(-$\frac{1}{7}$)-2+256${\;}^{\frac{3}{4}}$-3-1+($\sqrt{2}$-1)0-(log62+log63)=$\frac{449}{30}$.

分析 利用指數(shù)冪與對(duì)數(shù)的運(yùn)算性質(zhì)即可得出.

解答 解:原式=$0.{3}^{3×\frac{1}{3}}$-7-1×(-2)+${4}^{4×\frac{3}{4}}$-$\frac{1}{3}$+1-log66
=$\frac{3}{10}$-49+64-$\frac{1}{3}$+1-1
=$\frac{3}{10}$+15-$\frac{1}{3}$
=$\frac{449}{30}$.
故答案為:$\frac{449}{30}$.

點(diǎn)評(píng) 本題考查了指數(shù)冪與對(duì)數(shù)的運(yùn)算性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(α)=$\frac{{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})tan(-α-π)}}{sin(-π-α)}$.
(1)化簡(jiǎn)f(α);
(2)若α是第三象限角,且cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-1860°,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)y=f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)>1,且對(duì)任意的實(shí)數(shù)x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿(mǎn)足a1=f(0),且f(an+1)=$\frac{1}{{f(-2-{a_n})}}$(n∈N*),則a2015的值為(  )
A.4029B.3029C.2249D.2209

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中既是奇函數(shù)又在區(qū)間[-1,1]上單調(diào)遞減的是(  )
A.y=sinxB.y=-|x+1|C.$y=ln\frac{2-x}{x+2}$D.$y=\frac{1}{2}({2^x}+{2^{-x}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.“互聯(lián)網(wǎng)+”時(shí)代,倡導(dǎo)讀書(shū)稱(chēng)為一種生活方式,調(diào)查機(jī)構(gòu)為了解某小區(qū)老、中、青三個(gè)年齡階段的閱讀情況,擬采用分層抽樣的方法從該小區(qū)三個(gè)年齡階段的人群中抽取一個(gè)容量為50的樣本進(jìn)行調(diào)查,已知該小區(qū)有老年人600人,中年人600人,青年人800人,則應(yīng)從青年人抽取的人數(shù)為( 。
A.10B.20C.30D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知函數(shù)f(x)是R上的奇函數(shù),f(1)=1,且對(duì)任意x∈R都有f(x+6)=f(x)+f(3)成立,則f(2016)+f(2017)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.sin(-1200°)=( 。
A.-$\frac{\sqrt{3}}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-1,m),若$\overrightarrow a$⊥$\overrightarrow b$,則m=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知在三棱錐A-BCD中,AB=CD,且點(diǎn)M,N分別是BC,AD的中點(diǎn).若直線(xiàn)AB⊥CD,則直線(xiàn)AB與MN所成的角為$\frac{π}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案