【題目】已知直線l極坐標(biāo)方程ρcosθ﹣ρsinθ+3=0,圓M的極坐標(biāo)方程為ρ=4sinθ.以極點為原點,極軸為x軸建立直角坐標(biāo)系(1)寫出直線l與圓M的直角標(biāo)方程;
(2)設(shè)直線l與圓M交于A、B兩點,求AB的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一商場對每天進(jìn)店人數(shù)和商品銷售件數(shù)進(jìn)行了統(tǒng)計對比,得到如下表格:
其中=1,2,3,4,5,6,7.
(1)以每天進(jìn)店人數(shù)為橫軸,每天商品銷售件數(shù)為縱軸,畫出散點圖;
(2)求線性回歸方程;(結(jié)果保留到小數(shù)點后兩位)
(參考數(shù)據(jù):=3 245, =25, =15.43, =5 075)
(3)預(yù)測進(jìn)店人數(shù)為80人時,商品銷售的件數(shù).(結(jié)果保留整數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中.己知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ=4.
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)系方程;
(2)直線l與曲線C相交于A、B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若n是一個三位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n為“三位遞增數(shù)”(如137,359,567等).
在某次數(shù)學(xué)趣味活動中,每位參加者需從所有的“三位遞增數(shù)”中隨機(jī)抽取1個數(shù),且只能抽取一次.得分規(guī)則如下:若抽取的“三位遞增數(shù)”的三個數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)寫出所有個位數(shù)字是5的“三位遞增數(shù)”;
(2)若甲參加活動,求甲得分X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在班級活動中,4名男生和3名女生站成一排表演節(jié)目:(寫出必要的數(shù)學(xué)式,結(jié)果用數(shù)字作答)
(1)三名女生不能相鄰,有多少種不同的站法?
(2)四名男生相鄰有多少種不同的排法?
(3)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?
(4)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學(xué)身高互不相等)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)x,y滿足約束條件 ,目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值M,若M的取值范圍是[1,2],則點M(a,b)所經(jīng)過的區(qū)域面積= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 =1(a>b>0)經(jīng)過點P(﹣2,0)與點(1,1).
(1)求橢圓的方程;
(2)過P點作兩條互相垂直的直線PA,PB,交橢圓于A,B.
①證明直線AB經(jīng)過定點;
②求△ABP面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),命題:實數(shù)滿足不等式;命題:實數(shù)滿足不等式,若是的充分不必要條件,則實數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= lnx-x+,其中a>0.
(1)若f(x)在(0,+∞)上存在極值點,求a的取值范圍;
(2)設(shè)a∈(1,e],當(dāng)x1∈(0,1),x2∈(1,+∞)時,記f(x2)-f(x1)的最大值為M(a).那么M(a)是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com