【題目】n是一個三位正整數(shù),且n的個位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,則稱n三位遞增數(shù)”(137,359,567).

在某次數(shù)學(xué)趣味活動中,每位參加者需從所有的三位遞增數(shù)中隨機抽取1個數(shù),且只能抽取一次.得分規(guī)則如下:若抽取的三位遞增數(shù)的三個數(shù)字之積不能被5整除,參加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.

(1)寫出所有個位數(shù)字是5三位遞增數(shù)”;

(2)若甲參加活動,求甲得分X的分布列和數(shù)學(xué)期望E(X).

【答案】(1)答案見解析;(2)答案見解析.

【解析】

試題分析:()明確三位遞增數(shù)的含義,寫出所有的三位符合條件的三位遞增數(shù);(

試題解析:明確隨機變量的所有可能取值及取每一個值的含義,結(jié)合組合的知識,利用古典概型求出的分布列和數(shù)學(xué)期望.

解:()個位數(shù)是5三位遞增數(shù)有:125135,145235,245345;

)由題意知,全部三位遞增烽的個數(shù)為

隨機變量X的取值為:0-1,1,因此

,,

所以X的分布列為

X

0

-1

1

P




因此

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,sin2A+sin2B+sin2C=2 sinAsinBsinC,且a=2,則△ABC的外接圓半徑R=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系.若曲線的極坐標方程為, 點的極坐標為,在平面直角坐標系中,直線經(jīng)過點,斜率為.

(1)寫出曲線的直角坐標方程和直線的參數(shù)方程;

(2)設(shè)直線與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是(

A.f(x)=x2
B.f(x)=
C.f(x)=ex
D.f(x)=sinx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系xOy中,圓C的普通方程為在以坐標原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為寫出圓C的參數(shù)方程和直線l的直角坐標方程;設(shè)直線lx軸和y軸的交點分別為A、B,P為圓C上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDS中,面ABCD為矩形,SD⊥AD,且SD⊥AB,AD=1,AB=2,SD=

(1)求證:CD⊥平面ADS;
(2)求AD與SB所成角的余弦值;
(3)求二面角A﹣SB﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l極坐標方程ρcosθ﹣ρsinθ+3=0,圓M的極坐標方程為ρ=4sinθ.以極點為原點,極軸為x軸建立直角坐標系(1)寫出直線l與圓M的直角標方程;

(2)設(shè)直線l與圓M交于A、B兩點,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將7名應(yīng)屆師范大學(xué)畢業(yè)生分配到3所中學(xué)任教.

(1)4個人分到甲學(xué)校,2個人分到乙學(xué)校,1個人分到丙學(xué)校,有多少種不同的分配方案?

(2)一所學(xué)校去4個人,另一所學(xué)校去2個人,剩下的一個學(xué)校去1個人,有多少種不同的分配方案?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2016年“猴”年的到來,某電視臺舉辦猜獎活動,參與者需先后回答兩道選擇題,問題A有三個選項,問題B有四個選項,每題只有一個選項是正確的,正確回答問題A可獲獎金1千元,正確回答問題B可獲獎金2千元.活動規(guī)定:參與者可任意選擇回答問題的順序,如果第一個問題回答正確,則繼續(xù)答題,否則該參與者猜獎活動終止.假設(shè)某參與者在回答問題前,選擇每道題的每個選項的機會是等可能的.
(Ⅰ)如果該參與者先回答問題A,求其恰好獲得獎金1千元的概率;
(Ⅱ)試確定哪種回答問題的順序能使該參與者獲獎金額的期望值較大.

查看答案和解析>>

同步練習(xí)冊答案