已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031704330615826884/SYS201403170434155020743355_ST.files/image003.png">,若關(guān)于的不等式的解集為,求的值;
(Ⅱ)當(dāng)時(shí),為常數(shù),且,,求的取值范圍.
(Ⅰ);(Ⅱ).
【解析】
試題分析:(Ⅰ)根據(jù)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031704330615826884/SYS201403170434155020743355_DA.files/image003.png">,求得 ,得到;通過解一元二次不等式,解得.
(Ⅱ)注意到,令,遵循“求導(dǎo)數(shù),求駐點(diǎn),討論區(qū)間導(dǎo)數(shù)值正負(fù),確定極值”等步驟,即可得到的范圍為.
試題解析:(Ⅰ)由值域?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031704330615826884/SYS201403170434155020743355_DA.files/image003.png">,當(dāng)時(shí)有,
即 2分
則,由已知
解得, 4分
不等式的解集為,∴,
解得 6分
(Ⅱ)當(dāng)時(shí),,所以
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031704330615826884/SYS201403170434155020743355_DA.files/image019.png">,,所以
令,則 8分
當(dāng)時(shí),,單調(diào)增,當(dāng)時(shí),,單調(diào)減,
所以當(dāng)時(shí),取最大值, 10分
因?yàn)?img src="http://thumb.zyjl.cn//pic6/res/gzsx/web/STSource/2014031704330615826884/SYS201403170434155020743355_DA.files/image030.png">
,所以
所以的范圍為 12分
考點(diǎn):二次函數(shù),一元二次不等式,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
1 |
3 |
1 |
3 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分16分)本題共有2個(gè)小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù).
(1)若,求的值;
(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省海林市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),
(1)若曲線與曲線在它們的交點(diǎn)(1,c)處具有公共切線,求,的值;
(2)當(dāng),時(shí),若函數(shù)在區(qū)間[,2]上的最大值為28,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省如東縣高三12月四校聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分16分)
已知函數(shù),
(1)若在上的最大值為,求實(shí)數(shù)的值;
(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對(duì)任意給定的正實(shí)數(shù),曲線 上是否存在兩點(diǎn),使得是以(為坐標(biāo)原點(diǎn))為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在軸上?請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com