(本題滿分14分)
已知函數(shù),點(diǎn).
(Ⅰ)若,函數(shù)在上既能取到極大值,又能取到極小值,求的取值范圍;
(Ⅱ) 當(dāng)時,對任意的恒成立,求的取值范圍;
(Ⅲ)若,函數(shù)在和處取得極值,且,是坐標(biāo)原點(diǎn),證明:直線與直線不可能垂直.
解:(Ⅰ)當(dāng)時,,
令得,根據(jù)導(dǎo)數(shù)的符號可以得出函數(shù)在處取得極大值,
在處取得極小值.函數(shù)在上既能取到極大值,又能取到極小值,
則只要且即可,即只要即可.
所以的取值范圍是. ………… 4分
(Ⅱ)當(dāng)時,對任意的恒成立,
即對任意的恒成立,
也即在對任意的恒成立.
令,則. ………… 6分
記,則,
則這個函數(shù)在其定義域內(nèi)有唯一的極小值點(diǎn),
故也是最小值點(diǎn),所以,
從而,所以函數(shù)在單調(diào)遞增.
函數(shù).故只要即可.
所以的取值范圍是 ………… 9分
(Ⅲ)假設(shè),即,
即,
故,
即.
由于是方程的兩個根,
故.代入上式得. ………… 12分
,
即,與矛盾,
所以直線與直線不可能垂直. ………… 14分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
π |
3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,為上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點(diǎn)N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求實(shí)數(shù)m的值
(Ⅱ)若ACRB,求實(shí)數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點(diǎn)是⊙:上的任意一點(diǎn),過作垂直軸于,動點(diǎn)滿足。
(1)求動點(diǎn)的軌跡方程;
(2)已知點(diǎn),在動點(diǎn)的軌跡上是否存在兩個不重合的兩點(diǎn)、,使 (O是坐標(biāo)原點(diǎn)),若存在,求出直線的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù).
(1)求函數(shù)的定義域;
(2)判斷的奇偶性;
(3)方程是否有根?如果有根,請求出一個長度為的區(qū)間,使
;如果沒有,請說明理由?(注:區(qū)間的長度為).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com