9.若A、B、C是△ABC的三個(gè)內(nèi)角,且A<B<C(C≠$\frac{π}{2}$),則下列結(jié)論中正確的是( 。
A.sinA<sinCB.tanA<tanCC.cosA<cosCD.$\frac{1}{tanA}$<$\frac{1}{tanC}$

分析 A、B、C是△ABC的三個(gè)內(nèi)角,且A<B<C(C≠$\frac{π}{2}$),可得a<c,再利用正弦定理即可得出.

解答 解:∵A、B、C是△ABC的三個(gè)內(nèi)角,且A<B<C(C≠$\frac{π}{2}$),
∴a<c,∴sinA<sinC.
故選:A.

點(diǎn)評(píng) 本題考查了正弦定理、三角形邊角大小關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知直線l1:2x+y+2=0和l2:3x+y+1=0,設(shè)直線l1和l2的交點(diǎn)為P
(1)求過(guò)點(diǎn)P且與直線l3:2x+3y+5=0垂直的直線方程;
(2)直線l過(guò)點(diǎn)P且在兩坐標(biāo)軸上的截距之和為-6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知關(guān)于x的不等式ax+b>0的解集是(1,+∞),則關(guān)于x的不等式$\frac{ax-b}{x-2}$>0的解集是( 。
A.(-∞,-1)∪(2,+∞)B.(-1,2)C.(1,2)D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知平行四邊形ABCD的對(duì)角線分別為AC,BD,且$\overrightarrow{AE}=2\overrightarrow{EC}$,且$\overrightarrow{BF}=3\overrightarrow{FD}$,則( 。
A.$\overrightarrow{FE}=-\frac{1}{12}\overrightarrow{AB}-\frac{1}{12}\overrightarrow{AD}$B.$\overrightarrow{FE}=-\frac{1}{12}\overrightarrow{AB}-\frac{5}{12}\overrightarrow{AD}$C.$\overrightarrow{FE}=\frac{5}{12}\overrightarrow{AB}-\frac{1}{12}\overrightarrow{AD}$D.$\overrightarrow{FE}=\frac{5}{12}\overrightarrow{AB}-\frac{5}{12}\overrightarrow{AD}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.一種擲硬幣走跳棋的游戲:棋盤上有第0、1、2、…、100,共101點(diǎn),一枚棋子開始在第0站(即P0=1),由棋手每擲一次硬幣,棋子向前跳動(dòng)一次,若硬幣出現(xiàn)正面則棋子向前跳動(dòng)一站,出現(xiàn)反面則向前跳動(dòng)兩站,直到棋子跳到第99站(獲勝)或第100站(失。⿻r(shí),游戲結(jié)束,已知硬幣出現(xiàn)正、反面的概率相同,設(shè)棋子跳到第n站時(shí)的概率為Pn
(1)求P1、P2、P3;
(2)設(shè)an=Pn-Pn-1(1≤n≤100),求證:數(shù)列{an}是等比數(shù)列;
(3)求玩該游戲獲勝的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.解關(guān)于x方程sin(4x+$\frac{π}{3}$)-4sin(2x-$\frac{5π}{6}$)+cos(2x+$\frac{π}{6}$)+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知($\sqrt{x}$-$\frac{a}{x}$)6的展開式中含x${\;}^{\frac{3}{2}}}$的項(xiàng)的系數(shù)為30,則實(shí)數(shù)a=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在人壽保險(xiǎn)業(yè)中,要重視某一年齡的投保人的死亡率,經(jīng)過(guò)隨機(jī)抽樣統(tǒng)計(jì),得到某市一個(gè)投保人能活到75歲的概率為0.60,試問(wèn):
(1)若有3個(gè)投保人,求能活到75歲的投保人數(shù)ξ的分布列;
(2)3個(gè)投保人中至少有1人能活到75歲的概率.(結(jié)果精確到0.01)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知點(diǎn)P在拋物線y2=4x上,那么點(diǎn)P到點(diǎn)Q(2,-1)的距離與點(diǎn)P到拋物線焦點(diǎn)距離之和取得最小值時(shí),點(diǎn)P的橫坐標(biāo)為( 。
A.$\frac{1}{4}$B.-$\frac{1}{4}$C.-4D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案