設(shè)正實(shí)數(shù)x,y,z滿足x2-3xy+4y2-z=0,則當(dāng)
z
xy
取得最小值時(shí),x+2y-z的最大值為
 
考點(diǎn):基本不等式
專題:綜合題
分析:將z=x2-3xy+4y2代入
z
xy
,利用基本不等式化簡(jiǎn)即可得到當(dāng)
z
xy
取得最小值時(shí)的條件,用x,z表示y后利用配方法求得x+2y-z的最大值.
解答: 解:∵x2-3xy+4y2-z=0,
∴z=x2-3xy+4y2,又x,y,z為正實(shí)數(shù),
z
xy
=
x
y
+
4y
x
-3≥2
x
y
4y
x
-3=1(當(dāng)且僅當(dāng)x=2y時(shí)取“=”),
即x=2y(y>0),
∴x+2y-z=2y+2y-(x2-3xy+4y2
=4y-2y2
=-2(y-1)2+2≤2.
∴x+2y-z的最大值為2.
故答案為:2.
點(diǎn)評(píng):本題考查基本不等式,將z=x2-3xy+4y2代入
z
xy
,求得
z
xy
取得最小值時(shí)x=2y是關(guān)鍵,考查配方法求最值,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知實(shí)數(shù)x,y表示的平面區(qū)域C:
x-y+3≥0
x+y-1≥0
x≤2
,則z=2x-y的最大值為(  )
A、-1B、0C、4D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

人們生活水平的提高,越來(lái)越注重科學(xué)飲食.營(yíng)養(yǎng)學(xué)家指出,成人良好的日常飲食應(yīng)該至少提供0.075kg的碳水化合物,0.06kg的蛋白質(zhì),0.06kg的脂肪.1kg食物A含有0.105kg碳水化合物,0.07kg蛋白質(zhì),0.14kg脂肪,花費(fèi)28元;而1kg食物B含有0.105kg碳水化合物,0.14kg蛋白質(zhì),0.07kg脂肪,花費(fèi)21元.為了滿足營(yíng)養(yǎng)專家指出的日常飲食要求,同時(shí)使花費(fèi)最低,每天需要同時(shí)食用食物A和食物B多少kg?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù).f(x)=
10x-10 -x
10x+10-x

(1)求f(x)的值域;
(2)用函數(shù)單調(diào)性定義證明:f(x)在定義域上為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在一次聯(lián)考后,某校對(duì)甲、乙兩個(gè)理科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表,且已知在甲、乙兩個(gè)理科班全部110人中隨機(jī)抽取人為優(yōu)秀的概率為
3
11

優(yōu)秀 非優(yōu)秀
甲班 10
乙班 30
合計(jì) 110
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),能否有99%的把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?
(3)在甲、乙兩個(gè)理科班優(yōu)秀的學(xué)生中隨機(jī)抽取兩名學(xué)生,用ξ表示抽得甲班的學(xué)生人數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn等比數(shù)列{an}的前n項(xiàng)和,且a2=
1
9
S2=
4
9

(1)求數(shù)列{an}的通項(xiàng);
(2)設(shè)bn=
n
an
,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知PA與圓O相切于點(diǎn)A,OB⊥OP,AB交PO與點(diǎn)C.
(Ⅰ)求證:PA=PC;
(Ⅱ)若圓O的半徑為3,|OP|=5,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,l是過(guò)定點(diǎn)P(4,2)且傾斜角為α的直線;在極坐標(biāo)系(以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線C的極坐標(biāo)方程為ρ=4cosθ
(Ⅰ)寫出直線l的參數(shù)方程,并將曲線C的方程化為直角坐標(biāo)方程;
(Ⅱ)若曲線C與直線相交于不同的兩點(diǎn)M、N,求|PM|+|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,這個(gè)幾何體可能是一個(gè)( 。
A、三棱錐
B、底面不規(guī)則的四棱錐
C、三棱柱
D、底面為正方形的四棱錐

查看答案和解析>>

同步練習(xí)冊(cè)答案