已知一次函數(shù)滿足。
(1)求的解析式;
(2)求函數(shù)的值域。

(1);(2)

解析試題分析:(1)由代一次函數(shù)解析式既可得的值;(2)把(1)中求得的代入中,然后由基本不等式得出函數(shù)的值域;
試題解析:解:(1)由已知,得,      3分
解得。
所以函數(shù)的解析式為。      6分
(2)。
當(dāng)時,,
當(dāng)且僅當(dāng),即時等號成立,         8分
所以。                        10分
當(dāng)時,因為,
所以,
當(dāng)且僅當(dāng),即時等號成立,      11分
所以。                     12分
所以,函數(shù)的值域為。   13分
考點:函數(shù)的解析式及函數(shù)的值域;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù) 的定義域是 , 的導(dǎo)函數(shù),且 上恒成立
(Ⅰ)求函數(shù) 的單調(diào)區(qū)間。
(Ⅱ)若函數(shù) ,求實數(shù)a的取值范圍
(Ⅲ)設(shè) 的零點 , ,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)),.
(1)若在定義域上有極值,求實數(shù)的取值范圍;
(2)當(dāng)時,若對,總,使得,求實數(shù)的取值范圍;(其中為自然對數(shù)的底數(shù))
(3)對,且,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某通訊公司需要在三角形地帶OAC區(qū)域內(nèi)建造甲、乙兩種通信信號加強中轉(zhuǎn)站,甲中轉(zhuǎn)站建在區(qū)域BOC內(nèi),乙中轉(zhuǎn)站建在區(qū)域AOB內(nèi).分界線OB固定,且百米,邊界線AC始終過點B,邊界線OA、OC滿足∠AOC=75°,∠AOB=30°,∠BOC=45°,設(shè)百米,百米.
(1)試將表示成的函數(shù),并求出函數(shù)的解析式;
(2)當(dāng)取何值時?整個中轉(zhuǎn)站的占地面積最小,并求出其面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600無后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中有:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需要各種開支2 000元.

(1)當(dāng)商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對于定義域為的函數(shù),若同時滿足:
內(nèi)單調(diào)遞增或單調(diào)遞減;
②存在區(qū)間[],使上的值域為
那么把函數(shù))叫做閉函數(shù).
(1) 求閉函數(shù)符合條件②的區(qū)間;
(2) 若是閉函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在區(qū)間(0,+∞)上的函數(shù)f(x)滿足f()=f(x1)-f(x2),且當(dāng)x>1時,f(x)<0.
(1)求f(1)的值;
(2)判斷f(x)的單調(diào)性;
(3)若f(3)=-1,解不等式f(|x|)<-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

給定一組函數(shù)解析式:①如圖所示為一組函數(shù)圖象,請把圖象對應(yīng)的解析式的號碼填在相應(yīng)圖象下面的橫線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若函數(shù)f(x)的反函數(shù)為f 1(x)=x2x>0),則f(4)=          .

查看答案和解析>>

同步練習(xí)冊答案