19.已知函數(shù)f(x)=|2x-1|.求不等式f(x)<2的解集.

分析 由題意,|2x-1|<2,-2<2x-1<2,即可求不等式f(x)<2的解集.

解答 解:由題意,|2x-1|<2,
∴-2<2x-1<2,
∴-$\frac{1}{2}$<x<$\frac{3}{2}$,
∴不等式f(x)<2的解集為{x|$\frac{1}{2}$<x<$\frac{3}{2}$}.

點(diǎn)評(píng) 本題考查絕對(duì)值不等式,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在正四棱柱ABCD-A1B1C1D1中,底面邊長(zhǎng)為2$\sqrt{2}$,側(cè)棱長(zhǎng)為4,E、F分別
為棱AB、BC的中點(diǎn),EF∩BD=G;
(1)求直線(xiàn)D1E與平面D1DBB1所成角的大;
(2)求點(diǎn)D1到平面B1EF的距離d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,則不等式f(x)≤f(1)的解集是(  )
A.[-3,1]∪[3,+∞)B.[-3,1]∪[2,+∞)C.[-1,1]∪[3,+∞)D.(-∞,-3]∪[1,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.研究問(wèn)題:“已知關(guān)于x的不等式ax2-bx+c>0,令y=$\frac{1}{x}$,則y∈($\frac{1}{2}$,1),所以不等式cx2-bx+a>0的解集為($\frac{1}{2}$,1)”.類(lèi)比上述解法,已知關(guān)于x的不等式$\frac{k}{x+a}$+$\frac{x+b}{x+c}$<0的解集為(-2,-1)∪(2,3),則關(guān)于x的不等式$\frac{kx}{ax-1}$+$\frac{bx-1}{cx-1}$<0的解集為(-$\frac{1}{2}$,-$\frac{1}{3}$)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.己知橢圓$\frac{x^2}{m}+\frac{y^2}{n}=1$(m>n>0)的離心率e的值為$\frac{1}{2}$,右準(zhǔn)線(xiàn)方程為x=4.如圖所示,橢圓C左右頂點(diǎn)分別為A,B,過(guò)右焦點(diǎn)F的直線(xiàn)交橢圓C于M,N,直線(xiàn)AM,MB交于點(diǎn)P.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)P(4,$3\sqrt{3}$),直線(xiàn)AN,BM的斜率分別為k1,k2,求$\frac{k_1}{k_2}$.
(3)求證點(diǎn)P在一條定直線(xiàn)上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知冪函數(shù)過(guò)點(diǎn)(2,4),則f(3)=9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.如圖為函數(shù)f(x)的圖象,f′(x)為其導(dǎo)函數(shù),則不等式$\frac{2x+3}{2f'(x)}<0$的解集為( 。
A.(1,+∞)B.(-∞,-$\frac{3}{2}$)∪(-1,1)C.(-∞,-$\frac{3}{2}$)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.下列函數(shù)中圖象相同的是( 。
A.y=x與y=$\sqrt{{x}^{2}}$B.y=x-1與y=$\frac{{x}^{2}-1}{x+1}$
C.y=x2與y=2x2D.y=x2-4x+6與y=(x-2)2+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,這個(gè)程序的功能是( 。
A.計(jì)算1+2+3+┅+nB.計(jì)算1+(1+2)+(1+2+3)+┅+(1+2+3+┅+n)
C.計(jì)算n!D.以上都不對(duì)

查看答案和解析>>

同步練習(xí)冊(cè)答案