如圖,圓x2+y2=4與y軸的兩個(gè)交點(diǎn)分別為A、B.

以A、B為焦點(diǎn),坐標(biāo)軸為對(duì)稱軸的雙曲線與圓在y軸左方的交點(diǎn)分別為C、D.當(dāng)梯形ABCD的周長最大時(shí),求此雙曲線的方程.

答案:
解析:

解析:設(shè)雙曲線的方程為-=1(a>0,b>0),C(x0,y0)(x0<0,y0>0),|BC|=t(0<T<2).

連結(jié)AC,則∠ACB=90°.

作CE⊥AB于E,則有|BC|2=|BE|·|AB|,

∴t2=(2-y0)×4,即y0=2-.

∴梯形ABCD的周長l=4+2t+2y0.

即l=-t2+2t+8=-(t-2)2+10.

當(dāng)t=2時(shí),l最大.

此時(shí)|BC|=2,|AC|=2.

又C在雙曲線的上支上,且B、A分別為上、下兩焦點(diǎn),

∴|AC|-|BC|=2a,即2a=2-2.

∴a=3-1,即a2=4-2.

∴b2=c2-a2=2.

∴所求雙曲線方程為-=1.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),AB為過點(diǎn)P且傾斜角為α的弦,
(1)當(dāng)α=135°時(shí),求|AB|
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線AB的方程.
(3)求過點(diǎn)P的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓x2+y2=4與y軸的正半軸交于點(diǎn)B,P是圓上的動(dòng)點(diǎn),P點(diǎn)在x軸上的投影是D,點(diǎn)M滿足
DM
=
1
2
DP

(1)求動(dòng)點(diǎn)M的軌跡C的方程,并說明軌跡是什么圖形.
(2)過點(diǎn)B的直線l與M點(diǎn)的軌跡C交于不同的兩點(diǎn)E、F,若
BF
=2
BE
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,經(jīng)過圓x2+y2=4上任意一點(diǎn)Px軸的垂線,垂足為Q,求線段PQ中點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0112 期中題 題型:解答題

如圖,圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),AB為過點(diǎn)P且傾斜角為α的弦。
(1)當(dāng)α=135°時(shí),求|AB|;
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線AB的方程。
(3)求過點(diǎn)P的弦的中點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年安徽省宣城市郎溪中學(xué)高一(下)期中數(shù)學(xué)試卷(必修2)(解析版) 題型:解答題

如圖,圓x2+y2=8內(nèi)有一點(diǎn)P(-1,2),AB為過點(diǎn)P且傾斜角為α的弦,
(1)當(dāng)α=135°時(shí),求|AB|
(2)當(dāng)弦AB被點(diǎn)P平分時(shí),寫出直線AB的方程.
(3)求過點(diǎn)P的弦的中點(diǎn)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案