a
=(cosα,sinα),
b
=(cosβ,sinβ)
,,且|k
a
+
b
|=
3
|
a
-k
b
|
(k>0),
(1)用k表示數(shù)量積
a
b
;
(2)求
a
b
的最小值,并求出此時(shí)
a
b
的夾角.
分析:(1)由已知可得|
a
|=|
b
|=1,把另一條件平方整理即可,
(2)利用均值不等式a+b≥2
ab
求最值,再cosθ=
a
b
|
a
|•|
b
|
即可求夾角
解答:解:(1)由已知|
a
|=|
b
|=1,
|k
a
+
b
|
=
3
|
a
-k
b
|
,
|k
a
+
b
|
2
3
2
 (
a
-k
b
)
2
,
a
b
=
1
4
(k+
1
k
)

(2)∵k>0,
a
b
1
4
•2•
k•
1
k
=
1
2
,
∴cosθ=
a
b
|
a
|•|
b
|
=
1
2

∴θ=60°.
點(diǎn)評(píng):如果已知向量的坐標(biāo),求向量的夾角,我們可以分別求出兩個(gè)向量的坐標(biāo),進(jìn)一步求出兩個(gè)向量的模及他們的數(shù)量積,然后代入公式cosθ=
a
b
|
a
|•|
b
|
即可求解
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sinA=
2
2
3
,
(1)求cos(B+C)的值;
(2)若a=2,S△ABC=
2
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在銳角△ABC中,角A、B、C所對(duì)的邊分別是a、b、c、,S是該三角形的面積,且4sinB•sin2(
π
4
+
B
2
)+cos(2A+2C)=1+
3

(I)求角B.
(II)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
m
n
,設(shè)ω>0,
m
=(sinω x+cosω x, 
3
cosω x)
,
n
=(cosω x-sinω x,  2sinω x)
,若f(x)圖象中相鄰的兩條對(duì)稱軸間的距離等于
π
2

(1)求ω的值;
(2)在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,a=
3
,S△ABC=
3
2
.當(dāng)f(A)=1時(shí),求b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
OA
=
a
=(cosα,sinα)
OC
=
c
=(0,2)
OB
=
b
=(2cosβ,2sinβ)
,其中O為坐標(biāo)原點(diǎn),且0<α<
π
2
<β<π
(1)若
a
⊥(
b
-
a
)
,求β-α的值;
(2)若
OB
OC
=2,
OA
OC
=
3
,求△OAB的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知sinA=
2
2
3
,
(1)求cos(B+C)的值;
(2)若a=2,S△ABC=
2
,求b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案