設(shè)           

 

【答案】

【解析】

試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013090613061406834518/SYS201309061306459706900029_DA.files/image002.png">

所以,,

故答案為。

考點(diǎn):均值定理的應(yīng)用

點(diǎn)評:簡單題,應(yīng)用均值定理,要注意“一正,二定,三相等”,缺一不可。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=loga(x+b)(a>0,a≠1)),的圖象過點(diǎn)(2,1)和點(diǎn)(8,2),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△OFQ的面積為2
6
,且
OF
FQ
=m

(1)當(dāng)
6
<m<4
6
時(shí),求向量
OF
FQ
的夾角θ的取值范圍;
(2)設(shè)|
OF
|=c,m=(
6
4
-1)c2
,若以中心O為坐標(biāo)原點(diǎn),焦點(diǎn)F在x非負(fù)半軸上的雙曲線經(jīng)過點(diǎn)Q,當(dāng)|
OQ
|
取得最小值時(shí),求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l:(m+1)x+2y-4m-4=0(m∈R)恒過定點(diǎn)C,圓C是以點(diǎn)C為圓心,以4為半徑的圓.
(1)求圓C的方程;
(2)設(shè)圓M的方程為(x-4-7cosθ)2+(y-7sinθ)2=1,過點(diǎn)M上任意一點(diǎn)P分別作圓C的兩條切線PE、PF,切點(diǎn)為E、F,求
CE
CF
的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

7、設(shè)集合A={5,log2(a+3)},集合B={a,b}.若A∩B={2},則A∪B=
{1,2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△OAB中,
OC
=
1
3
OA
,
OD
=
1
2
OB
,AD與BC交于點(diǎn)M,
設(shè)
OA
=
a
,
OB
=
b
,
(1)試用向量
a
b
表示
OM
;
(2)在線段AC上取一點(diǎn)E,線段BD上取一點(diǎn)F,使EF過M點(diǎn),
OE
OA
,
OF
OB
,求證:
1
λ
+
2
μ
=5

查看答案和解析>>

同步練習(xí)冊答案