(10分)設(shè)函數(shù),其中向量=(sinx,-cosx),=(sinx,-3cosx),=(-cosx,sinx),x∈R.

(1) 求函數(shù)的單調(diào)減區(qū)間。

(2)函數(shù)的圖象可由函數(shù)的圖象經(jīng)過怎樣變化得出?

(3)若不等式上恒成立,求實數(shù)的取值范圍。

解:(1)由題意得

=(sinx,-cosx)·(sinx-cosx,sinx-3cosx)

=sin2x-2sinxcosx+3cos2x=2+cos2x-sin2x=sin(2x+)…2分

                

的單調(diào)減區(qū)間為………4分

(2)先將的圖象上所有點向右平移個單位,

再將所得的圖象上所有點橫坐標壓縮到原來的,

然后再將所得的圖象上所有點縱坐標伸長到原來的倍,

最后將所得圖象上所有點向上平移個單位即可得的圖象

………6分

(3)  ∵    在上恒成立

 ∴

      ∴   且       

 即         且   

      ∴                      ………10分

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2014屆湖北仙桃毛嘴高中高二上學業(yè)水平監(jiān)測理數(shù)學試卷(解析版) 題型:解答題

本題滿分10分)

設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,,的值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆湖北省仙桃市高二下學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

(本題滿分10分)

設(shè)函數(shù)為奇函數(shù),其圖象在點處的切線與直線垂直,導(dǎo)函數(shù)的最小值為.試求,,的值。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆甘肅省高三9月月考理科數(shù)學試卷 題型:解答題

(本題滿分10分)  若向量,其中,設(shè)

 

函數(shù),其周期為,且是它的一條對稱軸。

 

(1)求的解析式;

(2)當時,不等式恒成立,求實數(shù)的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆浙江省高一上學期期末考試數(shù)學試卷 題型:解答題

本小題滿分10分)設(shè)函數(shù),)的圖象的最高點D的坐標為,由最高點運動到相鄰的最低點F時,曲線與軸相交于點

(1)求A、ω、φ的值;

(2)求函數(shù),使其圖象與圖象關(guān)于直線對稱.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分10分)設(shè)平面直角坐標系中,設(shè)二次函數(shù)的圖象與兩坐標軸有三個交點,經(jīng)過這三個交點的圓記為.求:

(1)求實數(shù)的取值范圍;

(2)求圓 的方程;

(3)問圓是否經(jīng)過某定點(其坐標與 無關(guān))?請證明你的結(jié)論.

查看答案和解析>>

同步練習冊答案