【題目】3位邏輯學(xué)家分配10枚金幣,因?yàn)槎紝?duì)自己的邏輯能力很自信,決定按以下方案分配:
(1)抽簽確定各人序號(hào):1,2,3;
(2)1號(hào)提出分配方案,然后其余各人進(jìn)行表決,如果方案得到不少于半數(shù)的人同意(提出方案的人默認(rèn)同意自己方案),就按照他的方案進(jìn)行分配,否則1好只得到2枚金幣,然后退出分配與表決;
(3)再由2號(hào)提出方案,剩余各人進(jìn)行表決,當(dāng)且僅當(dāng)不少于半數(shù)的人同意時(shí)(提出方案的人默認(rèn)同意自己方案),才會(huì)按照他的提案進(jìn)行分配,否則也將得到2枚金幣,然后退出分配與表決;
(4)最后剩的金幣都給3號(hào).
每一位邏輯學(xué)家都能夠進(jìn)行嚴(yán)密的邏輯推理,并能很理智的判斷自身的得失,1號(hào)為得到最多的金幣,提出的分配方案中1號(hào)、2號(hào)、3號(hào)所得金幣的數(shù)量分別為__________.
【答案】9,0,1
【解析】先看一下個(gè)人的利益最大化:①3號(hào):如果1號(hào)的方案被否定,此時(shí)剩余金幣有8枚,那么2號(hào)的方案必然是2號(hào)8枚,3號(hào)0枚,然后2號(hào)方案不低于半數(shù)通過(guò),②由①的分析可知,只要1號(hào)的分配方案分配給3號(hào)的金幣數(shù)量多于0,3號(hào)就會(huì)同意,方案就會(huì)通過(guò),所以1號(hào)的利益最大化的分配方案是1號(hào),2號(hào),3號(hào)所得金幣數(shù)量分別是9,0,1.
故答案為:9,0,1
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)l是直線(xiàn),α,β是兩個(gè)不同的平面,則下列說(shuō)法正確的是( )
A.若l∥α,l∥β,則α∥β
B.若l∥α,l⊥β,則α⊥β
C.若α⊥β,l⊥α,則l∥β
D.若α⊥β,l∥α,則l⊥β
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=ax2+2ax+c(a≠0)的一個(gè)零點(diǎn)是-3,則它的另一個(gè)零點(diǎn)是( )
A.-1
B.1
C.-2
D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=lnx-的零點(diǎn)所在的大致區(qū)間是( )
A.(1,2)
B.(2,3)
C.(3,4)
D.(e,3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)參加朗讀比賽,其中只有一位獲獎(jiǎng),有同學(xué)走訪(fǎng)這四位同學(xué),甲說(shuō):“是乙或丙獲獎(jiǎng)”,乙說(shuō):“甲、丙都未獲獎(jiǎng)”,丙說(shuō):“我獲獎(jiǎng)了”,丁說(shuō):“是乙獲獎(jiǎng)了”。若四位同學(xué)中只有兩人說(shuō)的話(huà)是對(duì)的,則獲獎(jiǎng)的同學(xué)是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】t=1
For i=2 To 5
t=t*i
Next
輸出t
以上程序運(yùn)行結(jié)果為( )
A.80
B.95
C.100
D.120
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】判斷方程log2x+x2=0在區(qū)間[,1]內(nèi)有沒(méi)有實(shí)數(shù)根?為什么?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】不等式﹣x2+3x﹣2≥0的解集是( )
A.{x|x>2或x<1}
B.{x|x≥2或x≤1}
C.{x|1≤x≤2}
D.{x|1<x<2}
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)滿(mǎn)足f(x+1)+f(x﹣1)=﹣2x2+4x ,
(1)求f(x)解析式;
(2)求當(dāng)x∈[a,a+2],時(shí),f(x)最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com