【題目】已知F1、F2分別是雙曲線 =1(a>0,b>0)的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是(
A.(1,
B.( ,+∞)
C.( ,2)
D.(2,+∞)

【答案】D
【解析】解:雙曲線 =1的漸近線方程為y=± x,

不妨設(shè)過點F2與雙曲線的一條漸過線平行的直線方程為y= (x﹣c),

與y=﹣ x聯(lián)立,可得交點M( ,﹣ ),

∵點M在以線段F1F2為直徑的圓外,

∴|OM|>|OF2|,即有 >c2,

∴b2>3a2

∴c2﹣a2>3a2,即c>2a.

則e= >2.

∴雙曲線離心率的取值范圍是(2,+∞).

故選:D.

根據(jù)斜率與平行的關(guān)系即可得出過焦點F2的直線,與另一條漸近線聯(lián)立即可得到交點M的坐標,再利用點M在以線段F1F2為直徑的圓外和離心率的計算公式即可得出.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2011年,國際數(shù)學(xué)協(xié)會正式宣布,將每年的3月14日設(shè)為國際數(shù)學(xué)節(jié),來源則是中國古代數(shù)學(xué)家祖沖之的圓周率.祖沖之,在世界數(shù)學(xué)史上第一次將圓周率(π)值計算到小數(shù)點后的第7位,即3.1415926到3.1415927之間,數(shù)列{an}是公差大于0的等差數(shù)列,其前三項是“31415926”中連續(xù)的三個數(shù),數(shù)列{bn}是等比數(shù)列,其公比大于1的正整數(shù)且前三項是“31415926”中的三個數(shù),且a3=b3
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)cn= ,求c1+c2+c3+…+c .(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某次試驗中,有兩個試驗數(shù)據(jù),統(tǒng)計的結(jié)果如下面的表格1.

(1)在給出的坐標系中畫出的散點圖; 并判斷正負相關(guān);

(2)填寫表格2,然后根據(jù)表格2的內(nèi)容和公式求出的回歸直線方程,并估計當10的值是多少?(公式:,

1

2

3

4

5

2

3

4

4

5

表1

表格2

序號

1

1

2

2

2

3

3

3

4

4

4

4

5

5

5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,曲線C:ρ=2acosθ(a>0),l:ρcos(θ﹣ )= ,C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且∠AOB= ,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4 , 則x1x2x3x4取值范圍是(
A.(60,96)
B.(45,72)
C.(30,48)
D.(15,24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐S﹣ABCD中,底面ABCD為直角梯形,AB∥CD,BC⊥CD,平面SCD⊥平面ABCD,SC=SD=CD=AD=2AB,M,N分別為SA,SB的中點,E為CD中點,過M,N作平面MNPQ分別與BC,AD交于點P,Q,若 =t
(1)當t= 時,求證:平面SAE⊥平面MNPQ;
(2)是否存在實數(shù)t,使得二面角M﹣PQ﹣A的平面角的余弦值為 ?若存在,求出實數(shù)t的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個單位后,得到f(x)的圖象,則(
A.f(x)=﹣sin2x
B.f(x)的圖象關(guān)于x=﹣ 對稱
C.f( )=
D.f(x)的圖象關(guān)于( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線C:的兩個頂點分別為A,B,點P是C上異于A,B的一點,直線PA,PB的傾斜角分別為α,β.若,則C的離心率為( 。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+bx+a2在x=1處有極值4.
(I)求實數(shù)a,b的值;
(Ⅱ)當a>0時,求曲線y=f(x)在點(﹣2,f(﹣2))處的切線方程.

查看答案和解析>>

同步練習冊答案