【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4 , 則x1x2x3x4取值范圍是(
A.(60,96)
B.(45,72)
C.(30,48)
D.(15,24)

【答案】B
【解析】解:函數(shù)f(x)的圖象如下圖所示:

若滿足f(x1)=f(x2)=f(x3)=f(x4),其中x1<x2<x3<x4

則0<x1<1,1<x1<3,

則log3x1=﹣log3x2,即log3x1+log3x2=log3x1x2=0,

則x1x2=1,

同時x3∈(3,6),x4∈(12,15),

∵x3,x4關于x=9對稱,∴ =9,

則x3+x4=18,則x4=18﹣x3,

則x1x2x3x4=x3x4=x3(18﹣x3)=﹣x32+18x3=﹣(x3﹣9)2+81,

∵x3∈(3,6),

∴x3x4∈(45,72),

即x1x2x3x4∈(45,72),

故選:B.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=blnx+a(a>0,b>0)在x=1處的切線與圓(x﹣2)2+y2=4相交于A、B兩點,并且弦長|AB|= 2 ,則 + 的最小值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在R上的函數(shù)y=f(x)滿足:①對于任意的x∈R,都有f(x+2)=f(x﹣2);②函數(shù)y=f(x+2)是偶函數(shù);③當x∈(0,2]時,f(x)=ex ,a=f(﹣5),b=f( ).c=f( ),則a,b,c的大小關系是(
A.a<b<c
B.c<a<b
C.c<a<b
D.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設向量 =(sin2ωx,cos2ωx), =(cosφ,sinφ),其中|φ|< ,ω>0,函數(shù)f(x)= 的圖象在y軸右側(cè)的第一個最高點(即函數(shù)取得最大值的點)為 ,在原點右側(cè)與x軸的第一個交點為
(Ⅰ)求函數(shù)f(x)的表達式;
(Ⅱ)在△ABC中,角A′B′C的對邊分別是a′b′c′若f(C)=﹣1, ,且a+b=2 ,求邊長c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代數(shù)學著作《算法統(tǒng)宗》中有這樣一個問題:“三百七十八里關,初行健步不為難,次日腳痛減一半,六朝才得到其關,要見次日行里數(shù),請公仔細算相還.”其大意為:“有一個人走了378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地.”問此人第4天和第5天共走了(
A.60里
B.48里
C.36里
D.24里

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知F1、F2分別是雙曲線 =1(a>0,b>0)的左、右焦點,過點F2與雙曲線的一條漸近線平行的直線交雙曲線另一條漸近線于點M,若點M在以線段F1F2為直徑的圓外,則雙曲線離心率的取值范圍是(
A.(1,
B.( ,+∞)
C.( ,2)
D.(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)= (x為實常數(shù)).
(1)當a=1時,求函數(shù)φ(x)=f(x)﹣g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2fx=g(x)(其中e=2.71828…)在區(qū)間[ ]上有解,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=sin(2x+ ),將其圖象向右平移 ,則所得圖象的一條對稱軸是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,若圓x2+y2=a2被直線x﹣y﹣ =0截得的弦長為2
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)已知點A、B為動直線y=k(x﹣1),k≠0與橢圓C的兩個交點,問:在x軸上是否存在定點M,使得 為定值?若存在,試求出點M的坐標和定值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案