【題目】已知函數(shù)f(x)=[x2﹣(a+4)x+3a+4]ex,
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證不等式(x3﹣6x2+10x)ex>10(lnx+1)成立.
【答案】(1)見(jiàn)解析(2)見(jiàn)解析
【解析】
(1)求導(dǎo),討論a與2的大小關(guān)系,解導(dǎo)不等式,得出結(jié)論;
(2)根據(jù)題意,當(dāng)a=2時(shí),f(x)=(x2﹣6x+10)ex,故原不等式可化為f(x)>g(x),其中g(x)=10(),求出f(x)和g(x)的值域,比較即可.
(1)f'(x)=ex(x﹣a)(x﹣2),x∈R,
當(dāng)a<2時(shí),當(dāng)x∈(﹣∞,a],(2,+∞)時(shí),f'(x)>0,f(x)遞增;當(dāng)x∈(a,2)時(shí),f'(x)<0,f(x)遞減;
當(dāng)a>2時(shí),當(dāng)x∈(﹣∞,2],(a,+∞)時(shí),f'(x)>0,f(x)遞增;當(dāng)x∈(2,a)時(shí),f'(x)<0,f(x)遞減;
當(dāng)a=2時(shí),f'(x)≥0,f(x)在R上遞增;
(2)當(dāng)a=2時(shí),f(x)=(x2﹣6x+10)ex,
故原不等式可化為f(x)>g(x),其中g(x)=10(),
由(1)知,函數(shù)f(x)在(0,+∞)單調(diào)遞增,故當(dāng)x>0時(shí),f(x)>f(0)=10,
對(duì)于g(x)=10(),g'(x),
當(dāng)x∈(0,1)時(shí),g'(x)>0,g(x)遞增;當(dāng)x∈(1,+∞)時(shí),g'(x)<0,g(x)遞減;
故g(x)的最大值為g(1)=10,
故f(x)>g(x)成立,
原命題得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方體中,點(diǎn)P為AD的中點(diǎn),點(diǎn)Q為上的動(dòng)點(diǎn),給出下列說(shuō)法:
可能與平面平行;
與BC所成的最大角為;
與PQ一定垂直;
與所成的最大角的正切值為;
.
其中正確的有______寫(xiě)出所有正確命題的序號(hào)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P為曲線C上的動(dòng)點(diǎn),點(diǎn)M,N為直線上的兩個(gè)動(dòng)點(diǎn),若是以為直角的等腰三角形,求直角邊長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在處取得極值.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(1)當(dāng)時(shí),求不等式的解集;
(2)若不等式的解集包含[–1,1],求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于,若數(shù)列滿足,則稱這個(gè)數(shù)列為“K數(shù)列”.
(Ⅰ)已知數(shù)列:1,m+1,m2是“K數(shù)列”,求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在首項(xiàng)為-1的等差數(shù)列為“K數(shù)列”,且其前n項(xiàng)和滿足
?若存在,求出的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)已知各項(xiàng)均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在上的數(shù)滿足,當(dāng)時(shí).若關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題中,正確的個(gè)數(shù)是( )
①直線上有兩個(gè)點(diǎn)到平面的距離相等,則這條直線和這個(gè)平面平行;
②為異面直線,則過(guò)且與平行的平面有且僅有一個(gè);
③直四棱柱是直平行六面體;
④兩相鄰側(cè)面所成角相等的棱錐是正棱錐.
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com