觀察下列三角形數(shù)表:
第一行                 
第二行                
第三行                
第四行                
第五行               
………………………………………….
假設(shè)第行的第二個數(shù)為.
(1)依次寫出第八行的所有8個數(shù)字;
(2)歸納出的關(guān)系式,并求出的通項公式.

(1)根據(jù)已知條件可知每一個數(shù)字等于肩上兩個數(shù)之和,那么可知第八行中的8個數(shù)字為8,29,63,91,91,63,29,8
(2)

解析試題分析:(1)8,29,63,91,91,63,29,8
(規(guī)律:每行除首末數(shù)字外,每個數(shù)等于其肩上兩數(shù)字之和)
(2)由已知:
所以有:,, ,……
,,
將以上各式相加的:
所以的通項公式為:。
考點:累加法求解數(shù)列的通項公式
點評:主要是考查了遞推關(guān)系式的運用,結(jié)合累加法來求解數(shù)列的通項公式,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項和為Sn,且滿足anSn+1(n∈N*);
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若,cn,且{cn}的前n項和為Tn,求使得 對n∈N*都成立的所有正整數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列的前項和為,且滿足.
(1)求數(shù)列的通項公式;
(2)在數(shù)列的每兩項之間按照如下規(guī)則插入一些數(shù)后,構(gòu)成新數(shù)列:兩項之間插入個數(shù),使這個數(shù)構(gòu)成等差數(shù)列,其公差為,求數(shù)列的前項和為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的各項都是正數(shù),前項和是,且點在函數(shù)的圖像上.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設(shè),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的首項項和為,且,
(1)試判斷數(shù)列是否成等比數(shù)列?并求出數(shù)列的通項公式;
(2)記為數(shù)列項和,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列是公差為的等差數(shù)列,其前項和為,已知,。
(1)求數(shù)列的通項及前項和為;   
(2)求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且,
數(shù)列滿足,且點在直線上.
(Ⅰ)求數(shù)列、的通項公式;
(Ⅱ)求數(shù)列的前項和;
(Ⅲ)設(shè),求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列的前項和為,且.?dāng)?shù)列為等比數(shù)列,且,
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,求數(shù)列的前項和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某企業(yè)年初有資金1000萬元,如果該企業(yè)經(jīng)過生產(chǎn)經(jīng)營,每年資金增長率為50%,但每年年底都要扣除消費基金x萬元,余下資金投入再生產(chǎn),為實現(xiàn)經(jīng)過五年,資金達(dá)到2000萬元(扣除消費基金后),那么每年扣除的消費資金應(yīng)是多少萬元(精確到萬元)。

查看答案和解析>>

同步練習(xí)冊答案