f'(x)是函數(shù)f(x)=
1
3
x3-mx2+(m2-1)x+n
的導(dǎo)函數(shù),若函數(shù)y=f[f'(x)]在區(qū)間[m,m+1]上單調(diào)遞減,則實數(shù)m的取值范圍是( 。
A.[-1,0]B.[0,1]C.[-1,1]D.R
f'(x)=x2-2mx+(m2-1)
∵f'(x)=x2-2mx+(m2-1)在區(qū)間[m,m+1]上單調(diào)遞增
∴函數(shù)y=f(x)在區(qū)間[m,m+1]上單調(diào)遞減
即f'(x)在區(qū)間[m,m+1]上的值域為[-1,0]
∴f'(x)≤0在區(qū)間[-1,0]上恒成立f'(-1)≤0,f(0)≤0
解得-1≤m≤0
故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、已知f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),若函數(shù)f(x)的圖象在點x=5處的切線方程是x+y-5=0,則f(5)+f′(5)=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

12、設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),有下列命題:
①存在函數(shù)f(x),使函數(shù)y=f(x)-f′(x)為偶函數(shù);
②存在函數(shù)f(x)f′(x)≠0,使y=f(x)與y=f′(x)的圖象相同;
③存在函數(shù)f(x)f′(x)≠0使得y=f(x)與y=f′(x)的圖象關(guān)于x軸對稱.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)是R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+f(2)成立,當(dāng)x1,x2∈[0,2]且x1≠x2時,都有
f(x2)-f(x1)
x2-x1
>0.給出下列命題:
①f(2)=0且T=4是函數(shù)f(x)的一個周期;
②直線x=4是函數(shù)y=f(x)的一條對稱軸;
③函數(shù)y=f(x)在[-6,-4]上是增函數(shù);
④函數(shù)y=f(x)在[-6,6]上有四個零點.
其中正確命題的序號為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識訓(xùn)練(20)(解析版) 題型:解答題

已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)討論函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性;
(Ⅲ)若,設(shè)g(x)是函數(shù)f(x)在區(qū)間[0,+∞)上的導(dǎo)函數(shù),問是否存在實數(shù)a,滿足a>1并且使g(x)在區(qū)間上的值域為,若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年浙江省杭州高級中學(xué)高三第四次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如果f(x)是函數(shù)f(x)的一個極值,稱點(x,f(x))是函數(shù)f(x)的一個極值點.已知函數(shù)f(x)=(ax-b)(x≠0且a≠0)
(1)若函數(shù)f(x)總存在有兩個極值點A,B,求a,b所滿足的關(guān)系;
(2)若函數(shù)f(x)有兩個極值點A,B,且存在a∈R,求A,B在不等式|x|<1表示的區(qū)域內(nèi)時實數(shù)b的范圍.
(3)若函數(shù)f(x)恰有一個駐點A,且存在a∈R,使A在不等式表示的區(qū)域內(nèi),證明:0≤b<1.

查看答案和解析>>

同步練習(xí)冊答案