【題目】已知拋物線C1:y2=2px(p>0)與雙曲線C2: =1(a>0.b>0)有公共焦點(diǎn)F,且在第一象限的交點(diǎn)為P(3,2 ).
(1)求拋物線C1 , 雙曲線C2的方程;
(2)過(guò)點(diǎn)F且互相垂直的兩動(dòng)直線被拋物線C1截得的弦分別為AB,CD,弦AB、CD的中點(diǎn)分別為G、H,探究直線GH是否過(guò)定點(diǎn),若GH過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若直線GH不過(guò)定點(diǎn),說(shuō)明理由.
【答案】
(1)解:P(3,2 )代入拋物線C1:y2=2px(p>0),可得p=4,∴拋物線C1:y2=8x;
焦點(diǎn)F(2,0),則 ,∴a=1,b= ,∴雙曲線C2的方程 =1
(2)解:設(shè)點(diǎn)A(x1,y1),B(x2,y2),G(x3,y3),H(x4,y4)
把直線AB:y=k(x﹣2)代入y2=8x,得:
k2x2﹣(4k2+8)x+4k2=0,∴x3=2+ ,y3=k(x3﹣2)= ,
同理可得,x4=2+4k2,y4=﹣4k,
∴kGH= ,
∴直線GH為y﹣ = (x﹣2﹣ ),即y= (x﹣3),過(guò)定點(diǎn)P(3,0)
【解析】(1)P(3,2 )代入拋物線C1:y2=2px(p>0),可得p,求出拋物線方程.焦點(diǎn)F(2,0),則 ,求出a,b,可得雙曲線C2的方程;(2)欲證明直線GH過(guò)定點(diǎn),只需求出含參數(shù)的直線GH的方程,觀察是否過(guò)定點(diǎn)即可.設(shè)出A,B,G,H的坐標(biāo),用A,B坐標(biāo)表示G,H坐標(biāo),求出直線GH方程,化為點(diǎn)斜式,可以發(fā)現(xiàn)直線必過(guò)點(diǎn)(3,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,我艇在A處發(fā)現(xiàn)一走私船在方位角45°且距離為12海里的B處正以每小時(shí)10海里的速度向方位角105°的方向逃竄,我艇立即以14海里/小時(shí)的速度追擊,求我艇追上走私船所需要的最短時(shí)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正項(xiàng)等差數(shù)列{an}中a1和a4是方程x2﹣10x+16=0的兩個(gè)根,若數(shù)列{log2an}的前5項(xiàng)和為S5且S5∈[n,n+1],n∈Z,則n= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】調(diào)查某車間20名工人的年齡,第i名工人的年齡為ai,具體數(shù)據(jù)見表:
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
ai | 29 | 28 | 30 | 19 | 31 | 28 | 30 | 28 | 32 | 31 | 30 | 31 | 29 | 29 | 31 | 32 | 40 | 30 | 32 | 30 |
(1)作出這20名工人年齡的莖葉圖;
(2)求這20名工人年齡的眾數(shù)和極差;
(3)執(zhí)行如圖所示的算法流程圖(其中 是這20名工人年齡的平均數(shù)),求輸出的S值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D為△ABC的邊BC上一點(diǎn), =3 ,En(n∈N+)為邊AC上的點(diǎn),滿足 = an+1 , =(4an+3) ,其中實(shí)數(shù)列{an}中an>0,a1=1,則{an}的通項(xiàng)公式為( )
A.32n﹣1﹣2
B.2n﹣1
C.4n﹣2
D.24n﹣1﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,1+ = .
(1)求A的大小;
(2)若△ABC為銳角三角形,求函數(shù)y=2sin2B﹣2cosBcosC的取值范圍;
(3)現(xiàn)在給出下列三個(gè)條件:①a=1;②2c﹣( +1)b=0;③B=45°,試從中再選擇兩個(gè)條件,以確定△ABC,求出所確定的△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,(an﹣3)an+1﹣an+4=0(n∈N*).
(1)求a2 , a3 , a4;
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】過(guò)點(diǎn)A(﹣6,10)且與直線l:x+3y+16=0相切于點(diǎn)B(2,﹣6)的圓的方程是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com