圓C1:(x-6)2+y2=1和圓C2:(x-3)2+(y-4)2=36的位置關(guān)系是(  )
A、外切B、相交C、內(nèi)切D、內(nèi)含
考點(diǎn):圓與圓的位置關(guān)系及其判定
專題:計(jì)算題,直線與圓
分析:求出兩個(gè)圓的圓心與半徑,判斷兩個(gè)圓的圓心距離與半徑和與差的關(guān)系即可判斷兩個(gè)圓的位置關(guān)系.
解答: 解:因?yàn)閳AC1:(x-6)2+y2=1的圓心坐標(biāo)(6,0),半徑為1,
圓C2:(x-3)2+(y-4)2=36的圓心坐標(biāo)(3,4),半徑為6,
所以圓心距為
(6-3)2+(0-4)2
=5,
因?yàn)?=6-1,
所以兩個(gè)圓的關(guān)系是內(nèi)切.
故選C
點(diǎn)評(píng):本題考查兩個(gè)圓的位置關(guān)系的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)稱問題
①點(diǎn)關(guān)于點(diǎn)對(duì)稱,如(x0,y0)關(guān)于(a,b)對(duì)稱點(diǎn)為
 

②點(diǎn)關(guān)于線對(duì)稱,如(1,2)關(guān)于y=3x對(duì)稱點(diǎn)為
 
.特別地,(x0,y0)關(guān)于直線y=x對(duì)稱的點(diǎn)為
 
,(x0,y0)關(guān)于直線y=-x對(duì)稱的點(diǎn)為
 

③線關(guān)于點(diǎn)對(duì)稱:如直線Ax+By+C=0關(guān)于點(diǎn)(x0,y0)對(duì)稱的直線為
 

④線關(guān)于線對(duì)稱:如:直線Ax+By+C=0關(guān)于直線y=x對(duì)稱的直線方程為
 
;直線Ax+By+C=0關(guān)于直線y=-x對(duì)稱的直線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(調(diào)查某市出租車使用年限x和該年支出維修費(fèi)用y(萬元),得到數(shù)據(jù)如下:
使用年限x23456
維修費(fèi)用y2.23.85.56.57.0
(1)求線性回歸方程y=
?
b
x+
?
a
;                 
參考公式
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
?
a
=
.
y
-
?
b
.
x

(2)由(1)中結(jié)論預(yù)測(cè)第10年所支出的維修費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)g(x)=x2-4x+9在[-2,0]上的最小值為( 。
A、5B、9C、21D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線l1、l2的方向向量分別為
a
=(1,2,-2),
b
=(-2,3,2),則( 。
A、l1∥l2
B、l1與l2相交,但不垂直
C、l1⊥l2
D、不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P,Q的坐標(biāo)分別為(-2,0),(2,0),直線PM,QM相交于點(diǎn)M,且它們的斜率之積是-
1
4

(Ⅰ)求點(diǎn)M的軌跡方程;
(Ⅱ)過點(diǎn)O作兩條互相垂直的射線,與點(diǎn)M的軌跡交于A、B兩點(diǎn).試判斷點(diǎn)O到直線AB的距離是否為定值.若是請(qǐng)求出這個(gè)定值,若不是請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正方體ABCD-A1B1C1D1的棱長(zhǎng)為a,則
A1B
B1C
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
-1
2
+
sin
5x
2
2sin
x
2
,x∈(0,π)
(1)將f(x)表示成cosx的多項(xiàng)式
(2)求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足S1>1,且6Sn=(an+1)(an+2),n∈N*
(1)求an與an+1的關(guān)系式;
(2)在滿足條件的所有數(shù)列{an}中,求a2015最小值;
(3)若數(shù)列{an}各項(xiàng)都為正數(shù),設(shè)數(shù)列{bn}滿足an(2bn-1)=3,并記Tn為{bn}的前n項(xiàng)和,問:是否存在常數(shù)c使得對(duì)任意的正整數(shù)n,都有Tn≥c成立?如果存在,請(qǐng)寫出c的取值范圍;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案