對于區(qū)間[a,b](或(a,b)、[a,b)、(a,b]),我們定義|b-a|為該區(qū)間的長度,特別地,[a,+∞)和(-∞,b]的區(qū)間長度為正無窮大.
(1)關(guān)于x的不等式ax2+(2a-1)x-2≤0的解集的區(qū)間長度不小于4,求實數(shù)a的取值范圍;
(2)關(guān)于x的不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0恰好有3個整數(shù)解,求實數(shù)m的取值范圍.
考點:一元二次不等式的應用
專題:計算題,不等式的解法及應用
分析:(1)分類討論,利用關(guān)于x的不等式ax2+(2a-1)x-2≤0的解集的區(qū)間長度不小于4,即可求實數(shù)a的取值范圍;
(2)不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0為(x-6)(x+4)(x-m)(x-m-6)<0,根據(jù)關(guān)于x的不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0恰好有3個整數(shù)解,即可求實數(shù)m的取值范圍.
解答: 解:(1)a=0時,解集為[-2,+∞)符合要求;
a>0時,解集為[-2,
1
a
],則需
1
a
-(-2)≥4,∴0<a≤
1
2
;
a<0時,令
1
a
=-2,∴a=-
1
2
,
∴實數(shù)a的取值范圍是(-∞,
1
2
];
(2)不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0為(x-6)(x+4)(x-m)(x-m-6)<0,
∵關(guān)于x的不等式(x2-2x-24)[x2-(2m+6)x+(m2+6m)]<0恰好有3個整數(shù)解,
∴m=-4或m=0,或-3<m<-2,或-2<m<-1.
點評:熟練掌握一元二次不等式的解法及其新定義是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

等差數(shù)列{an}中,若a3=5,a5=3,則a1+a7=( 。
A、4B、8C、-4D、-8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在關(guān)于人體脂肪含量y(百分比)和年齡x關(guān)系的研究中,得到如下一組數(shù)據(jù)
年齡x232739414550
脂肪含量y9.517.821.225.927.528.2
(Ⅰ)畫出散點圖,判斷x與y是否具有相關(guān)關(guān)系;
(Ⅱ)通過計算可知
b
=0.6512,
a
=-2.72,請寫出y對x的回歸直線方程,并計算出23歲和50歲的殘差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α、β∈(0,π),且tanα、tanβ是方程x2-3x-5=0的兩根.
(1)求tan(α+β)的值;
(2)求cos(2α+2β)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某食品加工廠甲,乙兩個車間包裝小食品,在自動包裝傳送帶上每隔30分鐘抽取一袋食品,稱其重量并將數(shù)據(jù)記錄如下:
甲:102  100  98  97  103  101  99
乙:102  101  99  98  103  98   99
(1)食品廠采用的是什么抽樣方法(不必說明理由)?
(2)根據(jù)數(shù)據(jù)估計這兩個車間所包裝產(chǎn)品每袋的平均質(zhì)量;
(3)分析哪個車間的技術(shù)水平更好些?
附:S=
1
n
[(x1-
.
x
)
2
+(x2-
.
x
)
2
+…+(xn-
.
x
)
n
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(2-a)lnx+
1
x
+2ax(a∈R).
(1)求f(x)的單調(diào)區(qū)間;
(2)若對任意的a∈(-3,-2),任意的x1,x2∈[1,3],恒有ma+(a-2)ln3>|f(x1)-f(x2)|
成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,三個內(nèi)角A,B,C的對邊分別為a,b,c,且A,B,C成等差數(shù)列,
(1)若a,b,c成等比數(shù)列,求證△ABC為等邊三角形;
(2)若c=2a,求證△ABC為直角三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,一艘船以32.2n mile/h的速度向正北航行.在A處看燈塔S在船的北偏東20°的方向,30min后航行到B處,在B處看燈塔在船的北偏東65°的方向,已知距離此燈塔6.5n mile以外的海區(qū)為航行安全區(qū)域,這艘船可以繼續(xù)沿正北方向航行嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正項數(shù)列{an}滿足a1=
1
2
,且an+1=
an
1+an

(1)求證:數(shù)列{
1
an
}
是等差數(shù)列;
(2)求正項數(shù)列{an}的通項公式;
(3)若等比數(shù)列{bn}的通項公式是:bn=2n-1,求數(shù)列{
bn
an
}
的前n項和Sn

查看答案和解析>>

同步練習冊答案