分析 求函數(shù)的導(dǎo)數(shù),得到得fn+4(x)=fn(x),利用函數(shù)的周期性進(jìn)而可求出答案
解答 解:∵(sinx)′=cosx,(cosx)′=-sinx,(-sinx)′=-cosx,(-cosx)′=sinx,
∴fn+4(x)=fn(x),n∈N*,
即函數(shù)fn(x)是周期為4的周期函數(shù),
且f1(x)+f2(x)+f3(x)+f4(x)=sinx+cosx-sinx-cosx=0,
則$\sum_{i=1}^{2008}{{f_i}(0)=}$502(f1(x)+f2(x)+f3(x)+f4(x))=502×0=0,
故答案為:0
點(diǎn)評(píng) 本題考查了三角函數(shù)的導(dǎo)數(shù),理解三角函數(shù)的導(dǎo)函數(shù)具有周期性是解決此問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{{\sqrt{5}}}{5}$ | B. | -$\frac{2}{5}\sqrt{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{2}{5}\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 10×219 | C. | -10×218 | D. | -3×218 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-2] | B. | (-∞,-2) | C. | [1,+∞) | D. | (-∞,-2)∪[1,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com