分析 (1)將直線l:y=x與橢圓C1:$\frac{{x}^{2}}{2}+{y}^{2}=1$和橢圓C2:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$聯(lián)立可得:x1,x2,代入α1=|A1A2|可得答案;
(2)將直線l:y=x與橢圓Cn:$\frac{{x}^{2}}{{2}^{2n-1}}+\frac{{y}^{2}}{{2}^{2n-2}}=1$聯(lián)立得:xn,代入αn=|AnAn+1|可得結(jié)論;
(3)${β_n}={log_2}(\sqrt{3}{α_n})$=$lo{g}_{2}(\sqrt{3}•\frac{\sqrt{3}•{2}^{n}}{3})$=n,利用放縮法可得:$\frac{1}{2}$+$\frac{1•3}{2•4}$+…+$\frac{1×3×5×…×(2n-1)}{2×4×6×…×2n}$<$\sum _{k=1}^{n}\frac{1}{\sqrt{2k+1}}$<$\sqrt{2n+1}-1$,即$\frac{β_1}{β_2}+\frac{{{β_1}•{β_3}}}{{{β_2}•{β_4}}}+…+\frac{{{β_1}•{β_3}•{β_5}…{β_{2n-1}}}}{{{β_2}•{β_4}•{β_6}…{β_{2n}}}}<\sqrt{2{β_n}+1}$-1.
解答 解:(1)將直線l:y=x與橢圓C1:$\frac{{x}^{2}}{2}+{y}^{2}=1$聯(lián)立得:x1=$\sqrt{\frac{2}{3}}$,
將直線l:y=x與橢圓C2:$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$聯(lián)立得:x2=2$\sqrt{\frac{2}{3}}$,
故α1=|A1A2|=$\sqrt{2}$|x1-x2|=$\sqrt{2}$×$\sqrt{\frac{2}{3}}$=$\frac{2\sqrt{3}}{3}$.
證明:(2)將直線l:y=x與橢圓Cn:$\frac{{x}^{2}}{{2}^{2n-1}}+\frac{{y}^{2}}{{2}^{2n-2}}=1$聯(lián)立得:xn=2n-1$\sqrt{\frac{2}{3}}$,
則xn+1=2n$\sqrt{\frac{2}{3}}$,
故αn=|AnAn+1|=$\sqrt{2}$|xn-xn+1|=$\sqrt{2}$×2n-1$\sqrt{\frac{2}{3}}$=$\frac{\sqrt{3}•{2}^{n}}{3}$,
即:{αn}為以$\frac{2\sqrt{3}}{3}$為首項(xiàng),以2為公比的等比數(shù)列;
(3)${β_n}={log_2}(\sqrt{3}{α_n})$=$lo{g}_{2}(\sqrt{3}•\frac{\sqrt{3}•{2}^{n}}{3})$=n,
∵$[\frac{1×3×5×…×(2n-1)}{2×4×6×…×2n}]^{2}$=$\frac{1×3}{{2}^{2}}•\frac{3×5}{{4}^{2}}•$…•$\frac{(2n-1)×(2n+1)}{{(2n)}^{2}}$•$\frac{1}{2n+1}$<$\frac{1}{2n+1}$,
故$\frac{1×3×5×…×(2n-1)}{2×4×6×…×2n}$<$\frac{1}{\sqrt{2n+1}}$,
又由$\sqrt{2n+1}$>$\frac{\sqrt{2n+1}+\sqrt{2n-1}}{2}$,
故$\frac{1}{\sqrt{2n+1}}$<$\sqrt{2n+1}-\sqrt{2n-1}$,
∴$\frac{1}{2}$+$\frac{1•3}{2•4}$+…+$\frac{1×3×5×…×(2n-1)}{2×4×6×…×2n}$<$\sum _{k=1}^{n}\frac{1}{\sqrt{2k+1}}$<$\sqrt{2n+1}-1$,
即$\frac{β_1}{β_2}+\frac{{{β_1}•{β_3}}}{{{β_2}•{β_4}}}+…+\frac{{{β_1}•{β_3}•{β_5}…{β_{2n-1}}}}{{{β_2}•{β_4}•{β_6}…{β_{2n}}}}<\sqrt{2{β_n}+1}$-1.
點(diǎn)評 本題考查的知識點(diǎn)是橢圓的簡單性質(zhì),等比數(shù)列,對數(shù)的運(yùn)算性質(zhì),放縮法證明不等關(guān)系,綜合性強(qiáng),運(yùn)算量大,轉(zhuǎn)化困難,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-2,2) | B. | (-2,+∞) | C. | (-2,2] | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 45米 | B. | 55米 | C. | 70米 | D. | 10米 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com