15.已知雙曲線x2+my2=1的右焦點(diǎn)為F(2,0),m的值為$-\frac{1}{3}$,漸進(jìn)線方程$y=±\sqrt{3}x$.

分析 求出雙曲線的標(biāo)準(zhǔn)方程借助焦點(diǎn)坐標(biāo)建立方程即可.

解答 解:由題意,1-$\frac{1}{m}$=4,∴m=$-\frac{1}{3}$,
∴x2+my2=0,可得雙曲線漸近線為$y=±\sqrt{3}x$.
故答案為$-\frac{1}{3}$,$y=±\sqrt{3}x$.

點(diǎn)評(píng) 本題主要考查雙曲線漸近線的求解,根據(jù)雙曲線的焦點(diǎn)坐標(biāo),建立方程求出m的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)上一點(diǎn)到兩個(gè)焦點(diǎn)的距離分別為10和4,且離心率為2,則該雙曲線的虛軸長(zhǎng)為( 。
A.3B.6C.3$\sqrt{3}$D.6$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在△ABC中,D為邊BC上一點(diǎn),AD=6,BD=3,
DC=2.
(1)若AD⊥BC,求∠BAC的大。
(2)若∠ABC=$\frac{π}{4}$,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線y2=4x,過焦點(diǎn)F作直線與拋物線交于點(diǎn)A,B,設(shè)|AF|=m,|BF|=n,則m+n的最小值為( 。
A.2B.3C.$\sqrt{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若m<n<0,則下列不等式中正確的是( 。
A.$\frac{1}{n}>\frac{1}{m}$B.|n|>|m|C.$\frac{n}{m}+\frac{m}{n}>2$D.m+n>mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)經(jīng)過點(diǎn)P(0,1),離心率為$\frac{{\sqrt{2}}}{2}$,動(dòng)點(diǎn)M(2,m)(m>0).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長(zhǎng)為2的圓的方程;
(Ⅲ)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,證明:線段ON的長(zhǎng)為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.2016-2017賽季中國(guó)男子籃球職業(yè)聯(lián)賽(即CBA)正在如火如荼地進(jìn)行,北京時(shí)間3月10日,CBA半決賽開打,新疆隊(duì)對(duì)陣遼寧隊(duì),廣東隊(duì)對(duì)陣深圳隊(duì):某學(xué)校體育組為了調(diào)查本校學(xué)生對(duì)籃球運(yùn)動(dòng)是否感興趣,對(duì)本校高一年級(jí)兩個(gè)班共120名同學(xué)(其中男生70人,女生50人)進(jìn)行調(diào)查,得到的統(tǒng)計(jì)數(shù)據(jù)如表
  對(duì)籃球運(yùn)動(dòng)不感興趣 對(duì)籃球運(yùn)動(dòng)感興趣 總計(jì)
男生 2050 70
 女生10  4050 
 總計(jì)30 90 120
(1)完成下列2×2列聯(lián)表丙判斷能否在反錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“對(duì)籃球運(yùn)動(dòng)是否感興趣與性別有關(guān)”?
(2)采用分層抽樣的方法從“對(duì)籃球運(yùn)動(dòng)不感興趣”的學(xué)生里抽取一個(gè)6人的樣本,其中男生和女生個(gè)多少人?從6人中隨機(jī)選取3人做進(jìn)一步的調(diào)查,求選取的3人中至少有1名女生的概率
參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(K2≥k0 0.10 0.05 0.025 0.010 0.0050.001
k0 2.706 3.841 5.024 5.635 7.87910.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.三角形ABC的三頂點(diǎn)A(1,1),B(9,3),C(2,5),求角∠BAC的角平分線所在直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.命題“若x2≤1,則-1≤x≤1”的逆否命題是( 。
A.若x2≥1,則x≥1,或x≤-1B.若-1<x<1,則x2<1
C.若x≥1或x≤-1,則x2≥1D.若x>1或x<-1,則x2>1

查看答案和解析>>

同步練習(xí)冊(cè)答案