分析 (1)根據(jù)函數(shù)有最小值可判斷f(x)為開(kāi)口向上的二次函數(shù),且△=0,列方程解出a,b;
(2)求出g(x)的對(duì)稱(chēng)軸,得出[-2,2]在對(duì)稱(chēng)軸一側(cè),列出不等式解出k;
(3)求出f(x)的對(duì)稱(chēng)軸,對(duì)[0,1]與對(duì)稱(chēng)軸的關(guān)系進(jìn)行討論f(x)的單調(diào)性,從而得出G(a).
解答 解:(1)∵f(x)的值域?yàn)閇0,+∞),∴f(x)為二次函數(shù),且△=b2-4a=0,
又f(-1)=a-b+1=0,解得a=1,b=2.
∴f(x)=x2+2x+1,
∴F(x)={x2+2x+1,x>0−x2−2x−1,x<0.
(2)g(x)=x2+(2-k)x+1,∴g(x)的對(duì)稱(chēng)軸為x=k−22,
∵g(x)在[-2,2]上是單調(diào)函數(shù),∴k−22≤-2或k−22≥2.
解得k≤-2或k≥6.
(3)∵b-2=2a,∴b=2a+2,∴f(x)=ax2+(2a+2)x+1,
∴當(dāng)x∈[0,1]時(shí),F(xiàn)(x)=ax2+(2a+2)x+1,
若a=0,則F(x)=2x+1,∴F(x)在[0,1]上是增函數(shù),∴G(a)=F(1)=3,
若a≠0,則F(x)的對(duì)稱(chēng)軸為x=-2a+22a=-1-1a,
當(dāng)a>0時(shí),-1-1a<0,F(xiàn)(x)在[0,1]上是增函數(shù),∴G(a)=F(1)=3a+3.
當(dāng)a<0時(shí),若-1≤-1-1a≤1,即-1≤a≤-12時(shí),G(a)=F(-1-1a)=-a-1a-1,
若-1-1a>1,即-12<a<0時(shí),F(xiàn)(x)在[0,1]上是增函數(shù),∴G(a)=F(1)=3a+3.
若-1-1a<0,即a<-1時(shí),F(xiàn)(x)在[0,1]上是減函數(shù),∴G(a)=F(0)=1,
∴G(G)={1,a<−1−a−1a−1,−1≤a≤−123a+3,a>−12.
∴G(a)在(-∞,-1)上為常量函數(shù),在(-1,-12)上是減函數(shù),在(-12,+∞)上是增函數(shù),
∴G(a)的最小值為G(-12)=32.
點(diǎn)評(píng) 本題考查了函數(shù)解析式,函數(shù)單調(diào)性,最值的計(jì)算,分類(lèi)討論思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | √22 | B. | √2 | C. | 3√22 | D. | 3√24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 向左平移π3 | B. | 向左平移π6 | C. | 向右平移π3 | D. | 向右平移π6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | −14 | B. | 0或−14 | C. | 0或-1 | D. | -1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
支持 | 反對(duì) | 合計(jì) | |
男性 | 20 | 10 | 30 |
女性 | 40 | 30 | 70 |
合計(jì) | 60 | 40 | 100 |
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0.146 2 | B. | 0.153 8 | C. | 0.996 2 | D. | 0.853 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com