【題目】已知橢圓,離心率為,直線恒過的一個焦點.

1)求的標準方程;

2)設為坐標原點,四邊形的頂點均在上,交于,且,若直線的傾斜角的余弦值為,求直線軸交點的坐標.

【答案】12

【解析】

1)將轉化成直線點斜式方程形式,求出所過的恒點,進而知道橢圓的焦點,再根據橢圓的離心率公式進行求解即可.

2)根據向量等式,可以確定分別是的中點.,求出直線的方程,與橢圓方程聯(lián)立,消元,利用一元二次方程根與系數(shù)關系,求出的坐標,同理求出點坐標,求出直線的方程,最后求出直線軸交點的坐標.

1)設橢圓的半焦距為,可化為,所以直線恒過點,所以點,可得.因為離心率為,所以,解得,由,所以的標準方程為.

2)因為,所以.分別是的中點..由直線的傾斜角的余弦值為,得直線的斜率為2,所以,聯(lián)立消去,得.顯然,,且, ,所以,可得,同理可得,所以,所以.,得,所以直線軸交點的坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結束.

1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;

2)已知每檢測一件產品需要費用元,設表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,四個頂點恰好構成了一個邊長為且面積為的菱形.

1)求橢圓的標準方程;

2)已知直線,過右焦點F2,且它們的斜率乘積為,設,分別與橢圓交于點,,,的中點為,的中點為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在明代珠算發(fā)明之前,我們的先祖從春秋開始多是用算籌為工具來記數(shù)、列式和計算.算籌實際上是一根根相同長度的小木棍,如圖,是利用算籌表示數(shù)1~9的一種方法,例如:47可以表示為,如果用算籌表示一個不含“0”且沒有重復數(shù)字的三位數(shù),這個數(shù)至少要用8根小木棍的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是由兩個全等的菱形組成的空間圖形,,∠BAF=∠ECD60°.

1)求證:;

2)如果二面角BEFD的平面角為60°,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

1)證明:時,

2)當,求整數(shù)的最大值.(參考數(shù)據:,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線和點,過點作直線分別交,兩點,為線段的中點,為拋物線上的一個動點.

1)當時,過點作直線于另一點,為線段的中點,設,的縱坐標分別為,.的最小值;

2)證明:存在的值,使得恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,某公園有三條觀光大道圍成直角三角形,其中直角邊,斜邊.現(xiàn)有甲、乙、丙三位小朋友分別在大道上嬉戲,

1)若甲、乙都以每分鐘100的速度從點出發(fā)在各自的大道上奔走,乙比甲遲2分鐘出發(fā),當乙出發(fā)1分鐘后到達,甲到達,求此時甲、乙兩人之間的距離;

2)甲、乙、丙所在位置分別記為點.,乙、丙之間的距離是甲、乙之間距離的2倍,且,請將甲、乙之間的距離表示為的函數(shù),并求甲、乙之間的最小距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公園有一塊邊長為3百米的正三角形空地,擬將它分割成面積相等的三個區(qū)域,用來種植三種花卉.方案是:先建造一條直道分成面積之比為的兩部分(點D,E分別在邊,上);再取的中點M,建造直道(如圖).,(單位:百米).

1)分別求,關于x的函數(shù)關系式;

2)試確定點D的位置,使兩條直道的長度之和最小,并求出最小值.

查看答案和解析>>

同步練習冊答案