【題目】如圖,已知拋物線和點(diǎn),過點(diǎn)作直線分別交于,兩點(diǎn),為線段的中點(diǎn),為拋物線上的一個動點(diǎn).
(1)當(dāng)時,過點(diǎn)作直線交于另一點(diǎn),為線段的中點(diǎn),設(shè),的縱坐標(biāo)分別為,.求的最小值;
(2)證明:存在的值,使得恒成立.
【答案】(1)的最小值為4;(2)證明見解析.
【解析】
(1)根據(jù)題意設(shè)出直線與拋物線聯(lián)立,根據(jù)韋達(dá)定理及中點(diǎn)坐標(biāo)公式表示出,的縱坐標(biāo),根據(jù)基本不等式即可的最小值;
(2)分不經(jīng)過點(diǎn)Q和經(jīng)過點(diǎn)Q,不經(jīng)過時根據(jù)題意可得,由(1)聯(lián)立方程及韋達(dá)定理可得關(guān)于的方程,根據(jù)方程恒成立即可得到的值,再驗(yàn)證經(jīng)過點(diǎn)Q即可.
(1)因?yàn)?/span>分別交于A、B兩點(diǎn),所以不平行于軸.
設(shè),,
聯(lián)立與C方程,得,
且
由韋達(dá)定理可得.
因?yàn)?/span>分別交于A、B兩點(diǎn),所以不平行于軸,即,
又因?yàn)?/span>,設(shè),
聯(lián)立與C方程,得,且,
因?yàn)?/span>N為線段QD的中點(diǎn),由韋達(dá)定理,,
所以,當(dāng)時取到等號.
故的最小值為4.
(2)當(dāng)不經(jīng)過點(diǎn)Q時,等價于,即,
設(shè),,
由(1)聯(lián)立方程可得韋達(dá)定理,
又,同理,
所以
于是,,將(*)式代入整理得,
要使該式恒成立,則,解得.
又經(jīng)檢驗(yàn),當(dāng)經(jīng)過點(diǎn)Q時,仍然成立、
所以,存在,使得恒成立.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,左、右焦點(diǎn)分別為,,為橢圓C上一點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)橢圓C的左、右頂點(diǎn)分別為,,過,分別作x軸的垂線,,橢圓C的一條切線與,交于M,N兩點(diǎn),求證:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知三棱柱中,側(cè)棱與底面垂直,且,,、分別是、的中點(diǎn),點(diǎn)在線段上,且.
(1)求證:不論取何值,總有;
(2)當(dāng)時,求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,離心率為,直線恒過的一個焦點(diǎn).
(1)求的標(biāo)準(zhǔn)方程;
(2)設(shè)為坐標(biāo)原點(diǎn),四邊形的頂點(diǎn)均在上,交于,且,若直線的傾斜角的余弦值為,求直線與軸交點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點(diǎn).
(1)求的長;
(2)在以為極點(diǎn),軸的正半軸為極軸建立的極坐標(biāo)系中,設(shè)點(diǎn)的極坐標(biāo)為,求點(diǎn)到線段中點(diǎn)的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】百年大計,教育為本.某校積極響應(yīng)教育部號召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進(jìn)行專項(xiàng)培訓(xùn).據(jù)統(tǒng)計有如下表格.(其中表示通過自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))
年份(屆) | 2014 | 2015 | 2016 | 2017 | 2018 |
41 | 49 | 55 | 57 | 63 | |
82 | 96 | 108 | 106 | 123 |
(1)通過畫散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)
(2)若已知該校2019年通過自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測2019年高考該?既嗣5娜藬(shù);
(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.
參考公式:,
參考數(shù)據(jù):,,,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說法中正確的是( )
A. 函數(shù)圖象的對稱軸方程為
B. 函數(shù)的最大值為2
C. 函數(shù)的圖象上存在點(diǎn),使得在點(diǎn)處的切線與直線平行
D. 若函數(shù)的兩個不同零點(diǎn)分別為,,則最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的圖象經(jīng)過點(diǎn).
(1)求拋物線的方程和焦點(diǎn)坐標(biāo);
(2)直線交拋物線于,不同兩點(diǎn),且,位于軸兩側(cè),過點(diǎn),分別作拋物線的兩條切線交于點(diǎn),直線,與軸的交點(diǎn)分別記作,.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓M過點(diǎn)且與直線相切.
(1)求動圓圓心M的軌跡C的方程;
(2)斜率為的直線l經(jīng)過點(diǎn)且與曲線C交于A,B兩點(diǎn),線段AB的中垂線交x軸于點(diǎn)N,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com