18.y=sin($\frac{π}{3}$-$\frac{1}{2}$x),x∈[-2π,2π]的減區(qū)間是[$-\frac{π}{3}$,$\frac{5π}{3}$].

分析 利用誘導(dǎo)公式化簡(jiǎn)函數(shù)的解析式,根據(jù)正弦函數(shù)的單調(diào)性即可得到結(jié)論.

解答 解:y=sin($\frac{π}{3}$-$\frac{1}{2}$x)=-sin($\frac{1}{2}$x-$\frac{π}{3}$),
由2kπ-$\frac{π}{2}$≤$\frac{1}{2}$x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,k∈Z,
即4k$π-\frac{π}{3}$≤x≤4k$π+\frac{5π}{3}$,k∈Z,
∵x∈[-2π,2π],
∴當(dāng)k=0時(shí),不等式的解為-$\frac{π}{3}$≤x≤$\frac{5π}{3}$,
故函數(shù)的單調(diào)遞減區(qū)間為:[$-\frac{π}{3}$,$\frac{5π}{3}$].
故答案為:[-$\frac{π}{3}$,$\frac{5π}{3}$].

點(diǎn)評(píng) 本題主要考查三角函數(shù)單調(diào)性的求解,根據(jù)正弦函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.如圖,A,B,C是一個(gè)無(wú)蓋的正方體盒子展開(kāi)后的平面圖上的散點(diǎn),則在正方體盒子中∠ABC=( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.下表提供了某廠生產(chǎn)某產(chǎn)品過(guò)程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對(duì)照數(shù)據(jù),
 x 2 4 6 8 10
 y 4 5 7 9 10
(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,
(2)根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)生產(chǎn)20噸該產(chǎn)品的生產(chǎn)能耗是多少?lài)崢?biāo)準(zhǔn)煤?
附:回歸直線的斜率和截距的最小二乘估計(jì)分別為:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{m•{4}^{x}+1}{{2}^{x}}$-m(m∈R).
(1)若函數(shù)f(x)有零點(diǎn),求實(shí)數(shù)m的取值范圍;
(2)若對(duì)任意的x∈[-1,0]都有f(x)≥0成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若x,y滿(mǎn)足約束條件$\left\{\begin{array}{l}{x≥1}\\{x+y-3≤0}\\{x-y-3≤0}\end{array}\right.$,則x2+y2+4x的最大值為21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.觀察圓周上n個(gè)點(diǎn)之間所連的弦,發(fā)現(xiàn)兩個(gè)點(diǎn)可以連一條弦,3個(gè)點(diǎn)可以連3條弦,4個(gè)點(diǎn)可以連6條弦,5個(gè)點(diǎn)可以連10條弦,6個(gè)點(diǎn)可以連15條弦,請(qǐng)你探究其中規(guī)律,如果圓周上有10個(gè)點(diǎn).則可以連45條弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|2x-a|+|2x-4|,g(x)=|x-2|+1.
(1)a=0時(shí),解不等式f(x)≥8;
(2)若對(duì)任意x1∈R,存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若實(shí)數(shù)x,y滿(mǎn)足x2<y2,則下列不等式成立的是( 。
A.x<yB.-x<yC.$\frac{1}{x}$<$\frac{1}{y}$D.|x|<|y|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知p:方程x2-mx+1=0有兩個(gè)不等的正實(shí)根,q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若p或q 為真,p且q為假.求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案