已知向量
a
=(sinx,
3
2
)
,
b
=(cosx,-1)

(1)當向量
a
與向量
b
共線時,求tanx的值;
(2)求函數(shù)f(x)=2(
a
+
b
b
的最大值,并求函數(shù)取得最大值時的x的值.
分析:(1)根據(jù)向量共線寫出坐標形式的充要條件,得到關(guān)于正弦和余弦的齊次方程,兩邊同時除以余弦,得到結(jié)果.
(2)先用數(shù)量積整理出解析式,經(jīng)過三角恒等變形,得到y(tǒng)=Asin(ωx+φ)的形式,求出最值和對應(yīng)的自變量.
解答:解:(1)∵向量
a
與向量
b
共線共線,

3
2
cosx+sinx=0
∴tanx=-
3
2

(2)∵
a
+
b
=(sinx+cosx,
1
2
)

∴f(x)=2sinxcosx+2cos2x-1
=
2
sin(2x+
π
4
)
,

∴函數(shù)f(x)的最大值為
2

2x+
π
4
=2kπ+
π
2
(k∈Z)
得x=
2
+
π
8

∴函數(shù)取得最大值時x=
2
+
π
8
(k∈ Z)
點評:理解數(shù)量積的運算特點的基礎(chǔ)上,逐步把握數(shù)量積的運算律,引導學生注意數(shù)量積性質(zhì)的相關(guān)問題的特點,以熟練地應(yīng)用數(shù)量積的性質(zhì).這是近幾年高考題中的常見題型.?
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,
3
)
,
b
=(1,cosθ)
,θ∈(-
π
2
,
π
2
)

(1)若
a
b
,求θ;
(2)求|
a
+
b
|
的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1),
b
=(
2
,2)
f(x)=
a
b
+2

(1)求f(x)的表達式.
(2)用“五點作圖法”畫出函數(shù)f(x)在一個周期上的圖象.
(3)寫出f(x)在[-π,π]上的單調(diào)遞減區(qū)間.
(4)設(shè)關(guān)于x的方程f(x)=m在x∈[-π,π]上的根為x1,x2m∈(1,
2
)
,求x1+x2的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,-2),
b
=(1,cosθ)
,且
a
b
,則sin2θ+cos2θ的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinθ,1),
b
=(1,cosθ),θ∈(-
π
2
,
π
2
)

(1)若
a
b
,求θ的值;
(2)若已知sinθ+cosθ=
2
sin(θ+
π
4
)
,利用此結(jié)論求|
a
+
b
|的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sin(x-
π
4
),-1)
,
b
=(2,2)
f(x)=
a
b
+2

①用“五點法”作出函數(shù)y=f(x)在長度為一個周期的閉區(qū)間的圖象.
②求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
③求函數(shù)f(x)的最大值,并求出取得最大值時自變量x的取值集合
④函數(shù)f(x)的圖象可以由函數(shù)y=sin2x(x∈R)的圖象經(jīng)過怎樣的變換得到?
⑤當x∈[0,π],求函數(shù)y=2sin(x-
π
4
)
的值域
解:(1)列表
(2)作圖
精英家教網(wǎng)

查看答案和解析>>

同步練習冊答案