已知正三棱錐S-ABC的外接球的表面積為36π,M、N分別是SC、BC的中點,且MN⊥AM,則此三棱錐的側(cè)棱SA=
 
考點:棱錐的結(jié)構(gòu)特征
專題:計算題,空間位置關(guān)系與距離
分析:由題意可證MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,由此利用外接球的表面積公式求出直徑,再求出SA.
解答: 解:∵三棱錐S-ABC正棱錐,∴SB⊥AC(對棱互相垂直),MN∥SB,∴MN⊥AC
又∵MN⊥AM,AM∩AC=A,∴MN⊥平面SAC,SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球,
設(shè)SA=SB=SC=a,外接球的半徑為R,則4πR2=36π,∴R=3,
∴2R=
3a2
⇒a=2
3

故答案為:2
3


點評:考查三棱錐的外接球的表面積,考查空間想象能力,三棱錐擴展為正方體,它的對角線長就是外接球的直徑,是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足約束條件
x≤2
y≤2
x+y≥2
,則z=x+2y的取值范圍是(  )
A、[0,4]
B、[4,6]
C、[2,4]
D、[2,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx(a≠0),且f(x+1)為偶函數(shù),定義:滿足f(x)=x的實數(shù)x稱為函數(shù)f(x)的“不動點”,若函數(shù)f(x)有且僅有一個不動點.
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+kx2在(0,4)上是增函數(shù),求實數(shù)k的取值范圍;
(3)是否存在區(qū)間[m,n](m<n),使得f(x)在區(qū)間[m,n]上的值域為[3m,3n]?若存在,請求出m,n的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率為
3
2
,兩個焦點分別為F1和F2,橢圓C上一點到F1和F2的距離之和為12.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 設(shè)點B是橢圓C 的上頂點,點P,Q是橢圓上;異于點B的兩點,且PB⊥QB,求證直線PQ經(jīng)過y軸上一定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在原點,焦點在x軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形是一個面積為8的正方形(記為Q).
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點P是直線x=-4與x軸的交點,過點P的直線l與橢圓C相交于M,N兩點,當(dāng)線段MN的中點落在正方形Q內(nèi)(包括邊界)時,求直線l斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的體積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y滿足條件
x+y≤1
y≥0
x-y≤0
則z=(x-1)2+y2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB、AC為⊙O的切線,B和C是切點,延長OB到D,使BD=OB,連接AD.如果∠DAC=78°,那么∠ADO等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,0},則滿足A∪B={-1,0,1}的集合B的個數(shù)是
 

查看答案和解析>>

同步練習(xí)冊答案