15.若定義域?yàn)镽的函數(shù)f(x)滿足:對(duì)于任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0時(shí),有f(x)>2016,f(x)在區(qū)間[-2016,2016]的最大值,最小值分別為M、N,則M+N的值為( 。
A.2015B.2016C.4030D.4032

分析 根據(jù):對(duì)于任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-2016,得出f(0)=2016,f(x)+f(-x)=4032,x∈[-2016,2016]恒成立,可判斷f(x)的圖象關(guān)于(0,2016)對(duì)稱,運(yùn)用函數(shù)圖象的特殊性可以判斷出答案.

解答 解:∵對(duì)于任意的x1,x2∈R,x1<x2,x2-x1>0,
都有f(x1+x2)=f(x1)+f(x2)-2016,
∴f(x2-x1)>2016,
f(x2)-f(x1)=f(x2-x1+x1)-f(x1
=f(x2-x1)+f(x1)-f(x1)-2016
=f(x2-x1)-2016>0,即f(x1)<f(x2
∴f(x)在R上單調(diào)遞增,
∴M=f(2016),N=f(-2016),
∵對(duì)于任意的x1,x2∈[-2016,2016],
∴f(0)=2f(0)-2016,即f(0)=2016,
∴f(x-x)=f(x)+f(-x)-20126
即f(x)+f(-x)-2016=f(0),
f(x)+f(-x)=4032
∴M+N的值為4032,
故選:D.

點(diǎn)評(píng) 本題主要考查了抽象函數(shù)及其應(yīng)用,涉及到抽象函數(shù)的構(gòu)造和奇偶性的判斷和證明,函數(shù)最值之間的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x>0,y>0,且$\frac{2}{x}+\frac{3}{y}=2$,則$\frac{x}{2}+\frac{y}{3}$的最小值為( 。
A.1B.2C.4D.$\frac{25}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)f(x)=mex-x-1(其中e為自然對(duì)數(shù)的底數(shù),),若f(x)=0有兩根x1,x2且x1<x2,則函數(shù)y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域?yàn)椋?∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知曲線C:$\frac{x^2}{9}$+$\frac{y^2}{4}$=1,直線l:ρ(2cosθ-3sinθ)=12.
(1)將直線l的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)設(shè)點(diǎn)P在曲線C上,求P點(diǎn)到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知集合A={x|2x-3≥x-2},不等式log2(x+1)<2的解集為B,求A∪B,(∁RA)∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.?dāng)?shù)列{an}的前n項(xiàng)和為Sn且滿足a1=1,2an+1=2an+p(p為常數(shù),n=1,2,3…).
(1)求Sn;
(2)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)p的值;
(3)是否存在實(shí)數(shù)p,使得數(shù)列{$\frac{1}{{a}_{n}}$}滿足:可以從中取出無限多項(xiàng)并按原來的先后次序排成一個(gè)等差數(shù)列?若存在,求出所有滿足條件的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$,若f(a)=4,則由實(shí)數(shù)a的值構(gòu)成的集合是{-4,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$|{\overrightarrow a}$|=1,$|{\overrightarrow b}$|=2,$\overrightarrow a$,$\overrightarrow b$的夾角為120°,$\overrightarrow a$+$\overrightarrow b$+$\overrightarrow c$=$\overrightarrow 0$,則$\overrightarrow a$與$\overrightarrow c$的夾角為$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如果輸入x=2,那么執(zhí)行右圖中算法的結(jié)果是(  )
A.輸出2B.輸出4
C.輸出8D.程序出錯(cuò),輸不出任何結(jié)果

查看答案和解析>>

同步練習(xí)冊(cè)答案