如圖所示,正三棱柱ABC-A1B1C1中E,F(xiàn),G,H分別是AB、AC、A1C1、A1B1的中點(diǎn).
求證:平面A1EF∥平面BCGH.
考點(diǎn):平面與平面平行的判定
專題:空間位置關(guān)系與距離
分析:由已知條件條件出EF∥平面BCGH,A1F∥平面BCGH,由此能證明平面A1EF∥平面BCGH.
解答: 證明:∵△ABC中,E,F(xiàn)分別為AB,AC的中點(diǎn),
∴EF∥BC,
又∵EF不包含于平面BCGH,BC?平面BCGH,
∴EF∥平面BCGH,
又∵G,H分別為A1C1、AC的中點(diǎn),
∴A1G,F(xiàn)C平行且相等,
∴四邊形A1FCG是平行四邊形,
∴A1F∥GC,
又∵A1F不包含于平面BCGH,CG?平面BCGH,
∴A1F∥平面BCGH,
又∵A1F∩EF=F,
∴平面A1EF∥平面BCGH.
點(diǎn)評(píng):本題考查平面與平面平行的證明,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
sin2x+sinxcosx-
3
2
(x∈R).
(1)求f(
π
4
)的值;
(2)求f(x)的單調(diào)增區(qū)間;
(3)若x∈(0,
π
2
),求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2x+2sin2x.
(I)求f(
π
4
)的值;
(Ⅱ)設(shè)θ∈(0,π),f(
θ
2
)=
4
5
,求tanθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)等差數(shù)列{an}中,已知a1=
1
3
,a2+a5=4,an=33,試求n的值;
(2)在等比數(shù)列{an}中,a5=162,公比q=3,前n項(xiàng)和Sn=242,求首項(xiàng)a1和項(xiàng)數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且滿足
3
csinA=acosC
(1)求角C的大小;
(2)求cosA+sinB的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(x3+
1
x2
n的展開式的各項(xiàng)二項(xiàng)式系數(shù)之和等于32.
(I) 求展開式中的常數(shù)項(xiàng);
(Ⅱ)求展開式中的含x的奇次項(xiàng)系數(shù)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=kn+b,其前n項(xiàng)和為Sn
(I) 若S2=4,S3=9,求k,b的值;
(Ⅱ) 若k=-2且S5>0,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點(diǎn),焦點(diǎn)坐標(biāo)為(0,±5
2
)的橢圓被直線3x-y-2=0截得的弦的中點(diǎn)的橫坐標(biāo)為
1
2
,則橢圓方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個(gè)大小相等的共點(diǎn)力F1、F2,當(dāng)它們間的夾角為90°時(shí)合力大小為20N,則當(dāng)它們的夾角為120°時(shí),合力的大小為
 
N.

查看答案和解析>>

同步練習(xí)冊答案