已知(x3+
1
x2
n的展開(kāi)式的各項(xiàng)二項(xiàng)式系數(shù)之和等于32.
(I) 求展開(kāi)式中的常數(shù)項(xiàng);
(Ⅱ)求展開(kāi)式中的含x的奇次項(xiàng)系數(shù)的和.
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:計(jì)算題,二項(xiàng)式定理
分析:(I)由條件求出n的值,可得二項(xiàng)式展開(kāi)式的通項(xiàng)公式,再令x的冪指數(shù)等于0,求得r的值,即可求展開(kāi)式中的常數(shù)項(xiàng);
(Ⅱ)利用展開(kāi)式中的含x的奇次項(xiàng)系數(shù)的和等于展開(kāi)式中的含x的偶次項(xiàng)系數(shù)的和,即可求展開(kāi)式中的含x的奇次項(xiàng)系數(shù)的和.
解答: 解:(I)∵(x3+
1
x2
n展開(kāi)式中各項(xiàng)的二項(xiàng)式系數(shù)之和為2n=32,∴n=5,
故展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
5
•x15-5r,
令r=3,可得展開(kāi)式中的常數(shù)項(xiàng)為
C
3
5
=10;
(Ⅱ)展開(kāi)式中的含x的奇次項(xiàng)系數(shù)的和等于展開(kāi)式中的含x的偶次項(xiàng)系數(shù)的和,
故展開(kāi)式中的含x的奇次項(xiàng)系數(shù)的和為16.
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式系數(shù)的性質(zhì),二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)已知向量
a
b
的夾角為
3
,|
a
|=2,|
b
|=1,設(shè)
m
=3
a
-2
b
,
n
=2
a
+k
b

(1)若
m
n
,求實(shí)數(shù)k的值.
(2)當(dāng)k=1時(shí)求
m
n
的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=
1
2
BB1,D是BB1的中點(diǎn).
(Ⅰ)求證:平面ADC⊥平面A1DC;
(Ⅱ)設(shè)BC=
2
,求幾何體A1B1DCC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2cosxsin(x+
π
3
)-
3
2

(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若△ABC的三邊a,b,c滿足b2=ac,且邊b所對(duì)角為B,試求cosB的取值范圍,并確定此時(shí)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正三棱柱ABC-A1B1C1中E,F(xiàn),G,H分別是AB、AC、A1C1、A1B1的中點(diǎn).
求證:平面A1EF∥平面BCGH.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(5,-3),
b
=(9,-6-cosα),α是第二象限角,
a
∥(2
a
-
b
),則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx-a+2
(1)若a=1,b=-4,解關(guān)于x的不等式f(x)>0;
(2)若關(guān)于x的不等式f(x)>0的解集為(-1,3),求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sin(α+
π
6
)=-
4
5
,-
π
2
<α<0,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線y2=4x焦點(diǎn)為F,過(guò)F作弦AB,O是坐標(biāo)原點(diǎn),若三角形ABO面積是2
2
,則弦AB的中點(diǎn)坐標(biāo)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案