在直角坐標(biāo)系xOy中,橢圓的左、右焦點(diǎn)分別為F1,F(xiàn)2.其中F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且
(Ⅰ)求C1的方程;
(Ⅱ)若過(guò)點(diǎn)D(4,0)的直線l與C1交于不同的兩點(diǎn)E,F(xiàn).E在DF之間,試求△ODE 與△ODF面積之比的取值范圍.(O為坐標(biāo)原點(diǎn))
【答案】分析:(Ⅰ)依題意知F2(1,0),設(shè)M(x1,y1).由拋物線定義得,即.由此能夠求出C1的方程.
(Ⅱ)設(shè)l的方程為x=sy+4,代入,得(3s2+4)y2+24sy+36=0,由△>0,解得s2>4.設(shè)E(x1,y1),F(xiàn)(x2,y2),再結(jié)合韋達(dá)定理能夠?qū)С觥鱋DE與△ODF面積之比的取值范圍.
解答:解:(Ⅰ)依題意知F2(1,0),設(shè)M(x1,y1).由拋物線定義得,即
代入拋物線方程得(2分),進(jìn)而由及a2-b2=1解得a2=4,b2=3.故C1的方程為(4分)
(Ⅱ)依題意知直線l的斜率存在且不為0,設(shè)l的方程為x=sy+4代入,整理得(3s2+4)y2+24sy+36=0(6分)
由△>0,解得s2>4.設(shè)E(x1,y1),F(xiàn)(x2,y2),則,(1)(8分)
且0<λ<1.將y1=λy2代入(1)得
消去y2(10分)即,即3λ2-10λ+3<0解得.∵0<λ<1故△ODE與△ODF面積之比的取值范圍為(12分)
點(diǎn)評(píng):本題考查軌跡方程的求法和求△ODE與△ODF面積之比的取值范圍.解題時(shí)要認(rèn)真審題,注意培養(yǎng)直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與拋物線的相關(guān)知識(shí),解題時(shí)要注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,橢圓C1
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2.F2也是拋物線C2:y2=4x的焦點(diǎn),點(diǎn)M為C1與C2在第一象限的交點(diǎn),且|MF2|=
5
3

(Ⅰ)求C1的方程;
(Ⅱ)平面上的點(diǎn)N滿足
MN
=
MF1
+
MF2
,直線l∥MN,且與C1交于A,B兩點(diǎn),若
OA
OB
=0
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知點(diǎn)P(2cosx+1,2cos2x+2)和點(diǎn)Q(cosx,-1),其中x∈[0,π].若向量
OP
OQ
垂直,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在直角坐標(biāo)系xOy中,射線OA在第一象限,且與x軸的正半軸成定角60°,動(dòng)點(diǎn)P在射線OA上運(yùn)動(dòng),動(dòng)點(diǎn)Q在y軸的正半軸上運(yùn)動(dòng),△POQ的面積為2
3

(1)求線段PQ中點(diǎn)M的軌跡C的方程;
(2)R1,R2是曲線C上的動(dòng)點(diǎn),R1,R2到y(tǒng)軸的距離之和為1,設(shè)u為R1,R2到x軸的距離之積.問:是否存在最大的常數(shù)m,使u≥m恒成立?若存在,求出這個(gè)m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知圓M的方程為x2+y2-4xcosα-2ysinα+3cos2α=0(α為參數(shù)),直線l的參數(shù)方程為
x=tcosθ
y=1+tsinθ
(t
為參數(shù))
(I)求圓M的圓心的軌跡C的參數(shù)方程,并說(shuō)明它表示什么曲線;
(II)求直線l被軌跡C截得的最大弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系xOy中,已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,左右兩個(gè)焦分別為F1,F(xiàn)2.過(guò)右焦點(diǎn)F2且與x軸垂直的直線與橢圓C相交M、N兩點(diǎn),且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個(gè)頂點(diǎn)為B(0,-b),是否存在直線l:y=x+m,使點(diǎn)B關(guān)于直線l 的對(duì)稱點(diǎn)落在橢圓C上,若存在,求出直線l的方程,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案