17.執(zhí)行如圖所示的程序框圖,若輸出S的值為-18,則輸入的S值為( 。
A.-4B.-7C.-22D.-32

分析 模擬執(zhí)行程序,依次寫(xiě)出每次循環(huán)得到的S,i的值,當(dāng)i=6時(shí)不滿足條件i<6,退出循環(huán),輸出S的值為S+4-9+16-25=-18,從而解得S的值.

解答 解:由題意,模擬執(zhí)行程序,可得
i=2,
滿足條件i<6,滿足條件i是偶數(shù),S=S+4,i=3
滿足條件i<6,不滿足條件i是偶數(shù),S=S+4-9,i=4
滿足條件i<6,滿足條件i是偶數(shù),S=S+4-9+16,i=5
滿足條件i<6,不滿足條件i是偶數(shù),S=S+4-9+16-25,i=6
不滿足條件i<6,退出循環(huán),輸出S的值為S+4-9+16-25=-18,
故解得:S=-4.
故選:A.

點(diǎn)評(píng) 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,模擬執(zhí)行程序,正確得到循環(huán)結(jié)束時(shí)S的表達(dá)式是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若數(shù)列{an}滿足an=qn(q≠0,n∈N*)給出以下四個(gè)命題:①{a2n}是等比數(shù)列;②{lgan}是等差數(shù)列;③{2${\;}^{{a}_{n}}$}是等比數(shù)列;④{lgan2}是等差數(shù)列.其中正確的有( 。
A.①③B.②④C.②③D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.tan67°30′-tan22°30′的值為( 。
A.4B.2C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列說(shuō)法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.若命題p:?x∈R,x2-2x-1>0,則命題¬p:?x∈R,x2-2x-1<0
C.命題“若α>β,則2α>2β”的逆否命題為真命題
D.“x=-1”是x2-5x-6=0的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知三棱柱ABC-A1B1C1,側(cè)棱AA1垂直于底面ABC,∠$ABC=\frac{π}{2}$,AB=BC=AA1=4,D為BC的中點(diǎn).
(1)若E為棱CC1的中點(diǎn),求證:DE⊥A1C
(2)若E為棱CC1上異于端點(diǎn)的任意一點(diǎn),當(dāng)三棱錐C1-ADE的體積為$\frac{8}{3}$時(shí),求異面直線DE與AC1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ex,x∈R.
(Ⅰ)求函數(shù)f(x)在x=1處的切線方程;
(Ⅱ)若m>0,討論函數(shù)$g(x)=\frac{f(x)}{x^2}-m$零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=3f(x+2),當(dāng)x∈[0,2)時(shí),f(x)=$\left\{\begin{array}{l}{2^{x-1}}+1,0≤x≤1\\{log_{\frac{1}{2}}}\frac{x}{4},1<x<2\end{array}$,設(shè)f(x)在[2n-2,2n)上的最大值為an(n∈N*),且{an}的前n項(xiàng)和為Sn,則Sn=3(1-$\frac{1}{{3}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,ccosB-(2a-b)cosC=0
(Ⅰ)求角C的大;
(Ⅱ)設(shè)函數(shù)f(x)=$sin\frac{x}{2}•cos\frac{x}{2}+{cos^2}\frac{x}{2}$,當(dāng)f(B)=$\frac{{\sqrt{2}+1}}{2}$時(shí),若a=$\sqrt{6}+\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知△ABC的三個(gè)角∠A,∠B,∠C所對(duì)的邊分別為a,b,c.
(1)若sinA•cosB=sinC,試判斷△ABC的形狀;
(2)若A=$\frac{π}{3}$,求sin2B+sin2C的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案